Violation of the skin microbiome as a key factor in the development of occupational dermatoses
https://doi.org/10.31089/1026-9428-2025-65-11-722-727
EDN: buktmx
Abstract
Occupational diseases, in particular dermatoses, are traditionally associated with exposure to the skin of chemical and physical factors of the industrial environment. In recent years, scientific evidence has emerged indicating that a key pathogenetic link in the development and persistence of occupational dermatoses is a violation of the skin microbiome.
The skin microbiome is a complex polymicrobial community that plays an important role in maintaining skin homeostasis and barrier functions. There is increasing evidence pointing to the role of microbiota dysbiosis in the pathogenesis of various dermatological diseases. The analytical review presents data from foreign and domestic studies on the role of dysbiosis in the development of skin diseases induced by occupational factors.
Scientific evidence clearly indicates that working conditions in various professions shape the specific microbiome of workers' skin. Various professional activities act as a powerful factor that selectively suppresses some taxa of microorganisms and promotes the proliferation of others, forming a unique microbiome of the skin.
Understanding the mechanisms of interaction of skin microorganisms with the immune system opens up new prospects for the development of preventive and therapeutic strategies aimed at restoring a healthy microbiome in dermatoses of various origins.
The identification of dysbiosis associated with an increased risk of developing occupational dermatoses as a biomarker is of fundamental and practical importance for preventive medicine. A personalized approach will allow the introduction of targeted protective measures aimed at correcting precisely those dysbiotic shifts that are characteristic of a particular profession.
Contributions:
Izmerova N.I. — concept and design, data collection and processing, text writing, editing;
Kuzmina L.P. — concept and design, writing, editing;
Chistova I.Ya. — data collection and processing, writing text.
Funding. The study had no funding.
Conflict of interests. The authors declare no conflict of interest.
Received: 11.11.2025 / Accepted: 13.11.2025 / Published: 10.12.2025
About the Authors
Natalya I. IzmerovaRussian Federation
Chief Researcher, Honored Doctor of the Russian Federation, Dr. of Sci. (Med.), Professor.
e-mail: izmerova@irioh.ru
Lyudmila P. Kuzmina
Russian Federation
Deputy Director for Scientific Work, Dr. of Sci. (Biol.), Professor.
e-mail: kuzmina@irioh.ru
Ilona Ya. Chistova
Russian Federation
Senior Researcher of the Clinical Department of Occupational and Work-related Diseases, Cand. of Sci. (Med.).
e-mail: ilonachis@mail.ru
References
1. Mucci N., Tommasi E., Chiarelli A., Lulli L.G., Traversini V., Galea R.P., Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers’ Health. Int. J. Environ. Res. Public Health. 2022; 19(3): 1043. https://doi.org/10.3390/ijerph19031043
2. Kong H.H., Segre J.A. Skin microbiome: looking back to move forward. J. Invest. Dermatol. 2012; 132(3(2)): 933-9. https://doi.org/10.1038/jid.2011.417
3. Belkaid Y., Segre J.A. Dialogue between skin microbiota and immunity. Science. 2014; 346(6212): 954–9. https://doi.org/10.1126/science.1260144
4. Scharschmidt T.C., Fischbach M.A. What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug. Discov. Today Dis. Mech. 2013; 10(3–4): e83-e89. https://doi.org/10.1016/j.ddmec.2012.12.003
5. Yamazaki Y., Nakamura Y., Núñez G. Role of the microbiota in skin immunity and atopic dermatitis. Allergology International. 2017; 66(4): 539–544. https://doi.org/10.1016/j.alit.2017.08.004
6. Silina L.V., Bibicheva T.V., Myatenko N.I., Pereverzeva I.V. Structure, functions and significance of the skin microbiome in normal and pathological conditions. Russkij meditsinskij zhurnal. 2018; 8(II): 92–96.
7. Elias P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007; 29(1): 3–14. https://doi.org/10.1007/s00281-007-0060-9
8. Kong H.H., Oh J., Deming С., Conlan S., Grice E., Beatson M.A., Nomicos E., Polley E.C., Komarow H.D. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012; 22(5): 850–859. https://doi.org/10.1101/gr.131029.111
9. Costello E.K., Lauber C.L., Hamady M. Bacterial community variation in human body habitats across space and time. Science. 2009; 26(5960): 1694–7. https://doi.org/10.1126/science.1177486
10. Grice E.A., Kong H.H., Renaud G., Young A. A diversity profile of the human skin microbiota. Genome Res. 2008; 18(7): 1043–50. https://doi.org/10.1101/gr.075549.107
11. Grice E.A. The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res. 2015; 25: 1514–1520. https://doi.org/10.1101/gr.191320.115
12. Findley K. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013; 498(7454): 367–370. https://www.nature.com/articles/nature12171
13. Haase I., Nestle F.O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 2014; 14(5): 289–301. https://doi.org/10.1038/nri3646
14. Byrd A.L., Belkaid Y. The human skin microbiome. Nat. Rev. Microbiol. 2018; 16(3): 143–155. https://doi.org/10.1038/nrmicro.2017.157
15. Julia A. Segre J. Epidermal barrier formation and recovery in skin disorders. Clin. Invest. 2006; 116(5): 1150–1158. https://doi.org/10.1172/JCI28521
16. Underhill D.M., Iliev I.D. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology. 2014; 14(6): 405–416. https://www.nature.com/articles/nri3684
17. Limon J.J., Skalski J.H. Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host & Microbe. 2019; 25(3): 377–388.e6. https://clck.ru/3QS87e
18. Jansen K.U., Girgenti D.Q., Scully I.L., Anderson A.S. Vaccine review: "Staphyloccocus aureus vaccines: problems and prospects". Vaccine. 2013; 31(25): 2723–2730. https://doi.org/10.1016/j.vaccine.2013.04.002
19. Pamer E.G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016; 352: 535–538. https://doi.org/10.1126/science.aad9382
20. Iwase T., Uehara Y., Shinji H., Tajima A. Seo H., Takada K., Agata T., Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 20; 465(7296): 346–9. https://doi.org/10.1038/nature09074
21. Schommer N.N., Gallo R.L. Structure and function of the human skin microbiome. Trends in Microbiology. 2013; 21(12): 660–8 https://doi.org/10.1016/j.tim.2013.10.001
22. Prescott S.L., Larcombe D.L., Logan A.C., West C. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization Journal. 2017; 10(1): 29. https://doi.org/10.1186/s40413-017-0160-5
23. Sanford J.A., Gallo R.L. Functions of the skin microbiota in health and disease. Semin. Immunol. 2013; 25(5): 370–377. https://doi.org/10.1016/j.smim.2013.09.005
24. Bogdanova O.Yu., Chernykh T.F., Tairov I.T., Tairova A.B. Studying the role of the influence of hand treatment on the quantitative and qualitative composition of the microbiota. Mezhdunarodnyj zhurnal prikladnykh i fundamental'nykh issledovanij. 2023; 2: 5–9. https://doi.org/10.17513/mjpfi.13505
25. Lai P.S., Christiani D.C. Impact of occupational exposure on human microbiota. Curr. Opin. Allergy Clin. Immunol. 2019; 19(2): 86–91. https://doi.org/10.1097/ACI.0000000000000502
26. Gimranova G.G., Masyagutova L.M., Gizatullina L.G. The state of skin and mucosal microbiotes in workers as an adaptation criterion to occupational factors (based on the oil extraction industry). Gigiena i sanitariya. 2019; 98(9): 1015–1020. https://elibrary.ru/icjzyo
27. Niebuhr M., Gathmann M., Scharonow H., Mamerow D. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. Infection and Immunity. 2011; 79(4): 1615–22. https://doi.org/10.1128/IAI.00958-10
28. Naik S., Bouladoux N., Wilhelm C., Molloу M.J., Salcedo R. Compartmentalized control of skin immunity by resident commensals. Science. 2012; 337(6098): 1115–9. https://doi.org/10.1126/science.1225152
29. Gaitanis G., Magiatis P., Hantschke M., Bassukas I.D., Velegraki A. The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews. 2012; 25(1): 106–41. https://doi.org/10.1128/CMR.00021-11
30. Saunders C.W., Scheynius A., Heitman J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathogens. 2012; 8(6): e1002701. https://doi.org/10.1371/journal.ppat.1002701
31. Kistowska M., Fenini G., Jankovic D., Feldmeyer L., Kerl K. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling. Experimental Dermatology. 2014; 23(12): 884–9. https://doi.org/10.1111/exd.12552
32. Kobayashi T., Glatz M., Horiuchiet K., Kawasaki H., Akiyama H. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015; 42(4): 756–66. https://doi.org/10.1016/j.immuni.2015.03.014
33. Saunte D.M.L., Gaitanis G., Hay R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell. Infect. Microbiol. 2020; 20(10): 112. https://doi.org/10.3389/fcimb.2020.00112
34. Izmerova N.I., Tsidilkovskaya E.S., Ivchenko E.V. Clinical features of occupational allergic dermatitis in sensitization to fungal allergens. Russian Journal of Occupational Health and Industrial Ecology [Med. truda i prom. ekol.]. 2015; 9: 62–4. https://elibrary.ru/umgpuv
35. Izmerova N.I., Petinati Ya.A., Bogacheva N.A., Chistova I.Ya. The role of mycogenic infection in the pathogenesis of profallergodermatoses. In the collection: Professional health and work longevity. Materials of the International Scientific and Practical Conference. 2018: 75–77. https://elibrary.ru/xtjgup
36. Izmerova N.I., Bogacheva N.A., Chistova I.Ya., Petinati Ya.A. Mycoses as a production-related pathology. In the collection: Actual problems of occupational medicine. Proceedings of the Institute. Saratov, 2018: 193–199. https://elibrary.ru/vgoqbq https://doi.org/10.31089/978-5-907035-94-2-2018-1-193-199
37. Izmerova N.I., Kuzmina L.P., Bogacheva N.A., Chistova I.Ya., Petinati Ya.A., Tsidilkovskaya E.S. The role of syntropy in the pathogenesis of occupational allergodermatoses and mycotic infection. In the collection: Actual problems of occupational medicine. Proceedings of the Institute. Saratov; 2018: 200–208. https://doi.org/10.31089/978-5-907035-94-2-2018-1-200-208 https://elibrary.ru/yhmzzz
38. Bogdanova O.Yu., Chernykh T.F., Tairov I.T., Tairova A.B. Studying the role of the influence of hand treatment on the quantitative and qualitative composition of the microbiota. Mezhdunarodnyj zhurnal prikladnykh i fundamental'nykh issledovanij. 2023; 2: 5–9. https://doi.org/10.17513/mjpfi.13505
39. Anderson S.E., Meade B.J. Potential health effects associated with dermal exposure to occupational chemicals. Environmental Health Insights. 2014; 8: 51–62. https://doi.org/10.4137/EHI.S15258
40. Zhang K., Zhang J., Yu D., Wang T., Zhang L. Identification of Occupations in Different Populations Based on Skin Microbial Characteristics. Curr. Microbiol. 2025; 82(7): 288. https://doi.org/10.1007/s00284-025-04263-5
41. Peng M., Biswas D. Environmental Influences of High-Density Agricultural Animal Operation on Human Forearm Skin Microflora. Microorganisms. 2020; 8(10): 1481. https://doi.org/10.3390/microorganisms8101481
42. Wang X., Chen D., Cheng K., Fang C., Liao X. Occupational exposure in swine farm defines human skin and nasal microbiota. Front. Microbiol. 2023; 29(14): 1117866. https://doi.org/10.3389/fmicb.2023.1117866
43. Badamshina G.G., Masyagutova L.M., Fishchenko R.R., Bakirov A.B., Gizatullina L.G., Grigorieva L.M. Comparative assessment of the microbiota of the mucous membranes of the upper respiratory tract in medical workers and agricultural workers. Meditsina truda i ehkologiya cheloveka. 2015; 4: 32–35. https://elibrary.ru/uwalgp
44. Gimranova G.G., Masyagutova L.M., Gizatullina L.G. The state of the microbiota of the skin and mucous membranes in workers as a criterion for adaptation to production factors. Gigiena i sanitariya. 2019; 98(9): 1015–1020. https://elibrary.ru/icjzyo
45. Singh R.K. Occupational acne: case series. International Journal of Basic and Clinical Pharmacology Indian Dermatol Online J. 2024; 15(3): 543–545. https://doi.org/10.4103/idoj.idoj_312_23
46. Karpova O.A., Filimonov S.N., Semenikhin V.A. Industrial ecology and skin diseases. Russian Journal of Occupational Health and Industrial Ecology [Med. truda i prom. ekol.]. 2022; 62(11): 781–784. https://doi.org/10.31089/1026-9428-2022-62-11-781-784
47. Nyfors A. Skin Diseases in Oil-Rig Workers. In: Kanerva L., Wahlberg J.E., Elsner P., Maibach H.I. Handbook of Occupational Dermatology. Springer. Berlin, Heidelberg, 2000; 1021–1027. https://doi.org/10.1007/978-3-662-07677-4_159
48. Paetzold B., Willis J.R., Pereira de L.J., Knödlseder N., Brüggemann H., Quist S.R, Gabaldón T., Güell M. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019; 7(1): 95. https://doi.org/10.1186/s40168-019-0709-3
49. Belousova T.A., Goryachkina M.A., Katranova D.G. Features of skin microbiocenosis in patients with allergodermatoses: the problem of choosing external therapy. Klinicheskaya dermatologiya i venerologiya. 2013; 11(3): 107–112. https://elibrary.ru/qynqap
Review
For citations:
Izmerova N.I., Kuzmina L.P., Chistova I.Ya. Violation of the skin microbiome as a key factor in the development of occupational dermatoses. Russian Journal of Occupational Health and Industrial Ecology. 2025;65(11):722-727. (In Russ.) https://doi.org/10.31089/1026-9428-2025-65-11-722-727. EDN: buktmx






































