Preview

Медицина труда и промышленная экология

Расширенный поиск

Особенности влияния технологий виртуальной реальности на состояние здоровья работников

https://doi.org/10.31089/1026-9428-2023-63-11-715-722

EDN: xjhmcc

Аннотация

Представлен обзор исследований по влиянию виртуальной реальности на функциональное состояние и здоровье человека. Актуальность работы обусловлена ростом интереса к использованию VR-технологий в промышленности, образовательном процессе, в медицине и других областях. При этом известно, что различные побочные эффекты испытывают более 80% пользователей.

С целью изучения особенностей воздействия на организм человека негативных эффектов нахождения в виртуальной среде проанализированы более 60 зарубежных литературных источников.

Проведённый анализ научных публикаций показал, что большинство из них посвящено изучению киберболезни, хотя исследователи отмечают и другие негативные симптомы и эффекты, вызванные виртуальной реальностью: зрительное и мышечное утомление, острый стресс и умственное переутомление. Выделены три группы факторов, влияющих на развитие побочных эффектов: индивидуальные, факторы аппаратного и программного обеспечения. Установлено, что наибольшее влияние на состояние пользователя оказывают характеристики визуального дисплея.

Недостатком большинства исследований является использование метода анкетирования, а также оценка влияния кратковременной работы в расширенных средах на организм человека. Рассмотренные в данной статье вопросы формируют направления для дальнейших исследований в области взаимодействия человека и виртуальной среды.

Участие авторов:
Глухов Д.В. — редактирование;
Калинина С.А. — сбор материала, написание текста;
Меркулова А.Г. — сбор материала, написание текста.
Все авторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи, концепция исследования.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Работа не имела спонсорской поддержки.

Дата поступления: 11.09.2023 / Дата принятия к печати: 30.10.2023 / Дата публикации: 15.12.2023

Об авторах

Дмитрий Валерьевич Глухов
ФГБНУ «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова»
Россия

Глав. науч. сотр. лаб. физиологии труда и профилактической эргономики ФГБНУ «НИИ МТ», д-р мед. наук

e-mail: d.gluhov@irioh.ru



Светлана А. Калинина
ФГБНУ «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова»
Россия


Анастасия Г. Меркулова
ФГБНУ «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия


Список литературы

1. Hamilton D., McKechnie J., Edgerton E., Wilson C. Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education. 2020; 8: 1–32. https://doi.org/10.1007/s40692-020-00169-2

2. Huang T.L., Liao S.L. Creating e-shopping multisensory flow experience through augmented-reality interactive technology. Internet Research. 2017; 27(2): 449–75. https://doi.org/10.1108/IntR-11-2015-0321

3. Arino J.J., Juan M.C., Gil-Gomez J.A., Molla R. A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour & Information Technology. 2014; 33: 646–55. https://doi.org/10.1080/0144929X.2013.815277

4. Huang T.C., Chen C.C., Chou Y.W. Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education. 2016; 96: 72–82. https://doi.org/10.1016/j.compedu.2016.02.008

5. De Oliveira Malaquias F.F., Malaquias R.F. The role of virtual reality in the learning process of individuals with intellectual disabilities. Technology and Disability. 2017; 28(4): 133–38. https://doi.org/10.3233/TAD-160454

6. Fonseca D., Martí N., Redondo E., Navarro I., Sanchez A. Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models. Computers in Human Behavior. 2014; 31: 434–45. https://doi.org/10.1016/j.chb.2013.03.006

7. Huang H.M., Rauch U., Liaw S.S. Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education. 2010; 55: 1171–82. https://doi.org/10.1016/j.compedu.2010.05.014

8. Morélot S., Garrigoua A., Dedieua J., N’Kaouab B. Virtual reality for fire safety training: Influence of immersion and sense of presence on conceptual and procedural acquisition. Computers & Education. 2021; 166: 104–45. https://doi.org/10.1016/j.compedu.2021.104145

9. Champney R., Stanney K., Milham L., Carroll M., Cohn J. An examination of virtual environment training fidelity on training effectiveness. International Journal of Learning Technology. 2017; 12: 42–65. https://doi.org/10.1504/IJLT.2017.083997

10. Awada M., Zhu R., Becerik-Gerber B., Lucas G., Southers E. An integrated emotional and physiological assessment for VR-based active shooter incident experiments. Advanced Engineering Informatics. 2021; 47: 101227. https://doi.org/10.1016/j.aei.2020.101227

11. Kavanagh S., Luxton-Reilly A., Wünsche B., Plimmer B. A systematic review of Virtual Reality in education. Themes in Science and Technology Education. 2017; 10(2): 85–119.

12. Williams-Bell F.M., Kapralos B., Hogue A., Murphy B.M., Weckman E.J. Using serious games and virtual simulation for training in the fire Service. A review Fire Technology. 2015; 51(3): 553–84. https://doi.org/10.1007/s10694-014-0398-1

13. Piechowski S., Pustowalow W., Arz M., Rittweger J., Mulder E., Wolf O.T. et al. Virtual reality as training aid for manual spacecraft docking. Acta Astronautica. 2020; 177: 731–736. https://doi.org/10.1016/j.actaastro.2020.08.017

14. Joshi S., Hamilton M., Warren R., Faucett D., Tian W., Wang Y. et al. Implementing Virtual Reality technology for safety training in the precast/prestressed concrete industry. Applied ergonomics. 2021; 90: 103286. https://doi.org/10.1016/j.apergo.2020.103286

15. Fracaro S.G., Chan P., Gallagher T., Tehreem Y., Toyoda R., Bernaerts K. et al. Towards design guidelines for virtual reality training for the chemical industry. Education for Chemical Engineers. 2021; 36: 12–23. https://doi.org/10.1016/j.ece.2021.01.014

16. Firu A.C., Tapîrdea A.I., Feier A.I., Drăghici G. Virtual reality in the automotive field in industry 4.0. Materials Today: Proceedings. 2021; 45(5): 4177–82. https://doi.org/10.1016/j.matpr.2020.12.037

17. De Clerk M., Dangelmaier M., Schmierer G., Spath D. User Centered Design of Interaction Techniques for VR-Based Automotive Design Reviews. Frontiers in Robotics and AI. 2019; 6: 13. https://doi.org/10.3389/frobt.2019.00013

18. Zhao H., Zhao Q.H., Ślusarczyk B. Sustainability and digitalization of corporate management based on augmented/virtual reality tools usage: China and other world IT companies’ experience. Sustainability. 2019; 11(17): 4717. https://doi.org/10.3390/su11174717

19. Khandelwal K., Upadhyay A.K. Virtual reality interventions in developing and managing human resources. Human Resource Development International. 2021; 24(2): 219–33. https://doi.org/10.1080/13678868.2019.1569920

20. Souchet A.D., Lourdeaux D., Pagani A., Rebenitsch L. A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload. Virtual Reality. 2023; 27(1): 19–50. https://doi.org/10.1007/s10055-022-00672-0

21. Qiao J., Xu J., Li L., Ouyang Y.Q. The integration of immersive virtual reality simulation in interprofessional education: A scoping review. Nurse Education Today. 2021; 98: 104773. https://doi.org/10.1016/j.nedt.2021.104773

22. Yan C., Wu T., Huang K., He J., Liu H., Hong Y. et al. The Application of Virtual Reality in Cervical Spinal Surgery: A Review. World Neurosurgery. 2021; 145: 108–13. https://doi.org/10.1016/j.wneu.2020.09.040

23. García-Bravo S., Cuesta-Gómez A., Campuzano-Ruiz R., López-Navas M.J., Domínguez-Paniagua J., Araújo-Narváez A. et al. Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disability and rehabilitation. 2021; 43(4): 448–57. https://doi.org/10.1080/09638288.2019.1631892

24. Leemhuis E., Esposito R.M., Gennaro L.D., Pazzaglia M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. International Journal of Environmental Research and Public Health. 2021; 18(4): 1819. https://doi.org/10.3390/ijerph18041819

25. Puel F., Minville V., Vardon-Bounes F. What place for virtual reality in the intensive care unit during medical procedures? Journal of Intensive Care. 2021; 9(1): 1–3. https://doi.org/10.1186/s40560-021-00545-9

26. Rutkowski S., Szczegielniak J., Szczepańska-Gieracha J. Evaluation of the efficacy of immersive virtual reality therapy as a method supporting pulmonary rehabilitation: A randomized controlled trial. Journal of Clinical Medicine. 2021; 10(2): 352. https://doi.org/10.3390/jcm10020352

27. Li R., Tong Y., Yang T., Guo J., Si W., Zhang Y. et al. Towards Quantitative and Intuitive Percutaneous Tumor Puncture via Augmented Virtual Reality. Computerized Medical Imaging and Graphics. 2021; 90: 101905. https://doi.org/10.1016/j.compmedimag.2021.101905

28. Geraets C.N., van der Stouwe E.C., Pot-Kolder R., Veling W. Advances in immersive virtual reality interventions for mental disorders–a new reality? Current opinion in psychology. 2021; 41: 40–5. https://doi.org/10.1016/j.copsyc.2021.02.004

29. Huang B., Li S., Sun B., Xu W., Jiao J., Pan F. et al. Verification of using virtual reality to evaluate deficiencies in cognitive function among patients with schizophrenia in the remission stage: a cross-sectional study. BMC psychiatry. 2021; 21(1): 1–8. https://doi.org/10.1186/s12888-020-03029-6

30. Rose V., Stewart I., Jenkins K.G., Tabbaa L., Ang C.S., Matsangidou M. Bringing the outside in: The feasibility of virtual reality with people with dementia in an inpatient psychiatric care setting. Dementia. 2021; 20(1): 106–29. https://doi.org/10.1177/1471301219868036

31. De Luca R., Leonardi S., Portaro S., Le Cause M., De Domenico C., Colucci P.V. et al. Innovative use of virtual reality in autism spectrum disorder: A case-study. Applied Neuropsychology: Child. 2021; 10(1): 90–100. https://doi.org/10.1080/21622965.2019.1610964

32. European Agency for Safety and Health at Work, Digitalisation and occupational safety and health (OSH): an EU-OSHA research programme, Publications Office of the European Union, 2020. https://data.europa.eu/doi/10.2802/559587

33. Milgram P., Takemura H., Utsumi A., Kishino F. Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and telepresence technologies. 1995; 2351: 282–92. https://doi.org/10.1117/12.197321

34. Cardenas-Robledo L.A., Hernández-Uribe Ó., Reta C., Cantoral-Ceballos J.A. Extended reality applications in industry 4.0. — A systematic literature review. Telematics and Informatics. 2022; 73: 101863. https://doi.org/10.1016/j.tele.2022.101863

35. Cobb S.V.G., Nichols S., Ramsey A., Wilson J.R. Virtual reality-induced symptoms and effects (VRISE). Presence. 1999; 8: 169–86. https://doi.org/10.1162/105474699566152

36. LaValle S.M. Virtual reality. Cambridge University Press; 2019.

37. Stanney K., Lawson B.D., Rokers B., Dennison M., Fidopiastis C., Stoffregen T. et al. (2020b). Identifying causes of and solutions for cybersickness in immersive technology: reformulation of a research and development agenda. Int. J. Hum. Comput. Interact. 2020; 36: 1783–803. https://doi.org/10.1080/10447318.2020.1828535

38. Ohyama S., Nishiike S., Watanabe H., Matsuoka K., Akizuki H., Takeda N. et al. Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx. 2007; 34: 303–6. https://doi.org/10.1016/j.anl.2007.01.002

39. Handbook of virtual environments: design, implementation, and applications, second edition. ed. K.S. Hale, K.M. Stanney. CRC Press; 2014. https://doi.org/10.1201/b17360

40. Chan Z., MacPhail A., Au I., Zhang J., Lam B.M., Ferber R., Cheung R.T. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. PLoS ONE. 2019; 14(12): e0225972. https://doi.org/10.1371/journal.pone.0225972

41. Souchet A.D., Lourdeaux D., Burkhardt J.M., Hancock P.A. Design guidelines for limiting and eliminating virtual reality-induced symptoms and effects at work: a comprehensive, factor-oriented review. Frontiers in Psychology. 2023; 14: 1161932. https://doi.org/10.3389/fpsyg.2023.1161932

42. Stanney K.M., Kennedy R.S. Aftereffects from virtual environment exposure: How long do they last? Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 1998; 48(2): 1476–80. https://doi.org/10.1177/154193129804202103

43. Moss J.D., Muth E.R. Characteristics of head-mounted displays and their effects on simulator sickness. Human Factors. 2011; 53: 308–19. https://doi.org/10.1177/0018720811405196

44. Keshavarz B., Ramkhalawansingh R., Haycock B., Shahab S., Campos J.L. Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation Research Part F: Traffic Psychology and Behaviour. 2018; 54: 47–62. https://doi.org/10.1016/j.trf.2018.01.007

45. Kourtesis P., Collina S., Doumas L., MacPherson S. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019; 13: 417. https://doi.org/10.3389/fnhum.2019.00417

46. Hertweck S., Weber D., Alwanni H., Unruh F., Fischbach M., Latoschik M. et al. Brain Activity in Virtual Reality: Assessing Signal Quality of High-Resolution EEG While Using Head-Mounted Displays. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE; 2019: 970–1. https://doi.org/10.1109/VR.2019.8798369

47. Hansberger J.T., Peng C., Mathis S.L., Shanthakumar V.A., Meacham S.C., Cao L. et al. Dispelling the gorilla arm syndrome: the viability of prolonged gesture interactions. In: International conference on virtual, augmented and mixed reality. Springer, Cham; 2017: 505–20. https://doi.org/10.1007/978-3-319-57987-0_41

48. Chihara T., Seo A. Evaluation of physical workload affected by mass and center of mass of head-mounted display. Applied Ergonomics. 2018; 68: 204–12. https://doi.org/10.1016/j.apergo.2017.11.016

49. Yan Y., Chen K., Xie Y., Song Y., Liu Y. The effects of weight on comfort of virtual reality devices. In: International Conference on Applied Human Factors and Ergonomics. Springer, Cham; 2018: 239–48. https://doi.org/10.1007/978-3-319-94706-8_27

50. Lutz O., Burmeister C., dos Santos L., Morkisch N., Dohle C., Krüger J. Application of head-mounted devices with eye-tracking in virtual reality therapy. Current Directions in Biomedical Engineering. 2017; 3(1): 53–6. https://doi.org/10.1515/cdbme-2017-0012

51. Ackley B.J., Ladwig G.B., Swan B.A., Tucker S.J. Evidence-based nursing care guidelines. 1st ed. Amsterdam: Mosby Elsevier, 2008.

52. Howard M.C., Van Zandt E.C. A meta-analysis of the virtual reality problem: Unequal effects of virtual reality sickness across individual differences. Virtual Reality. 2021; 25: 1221–46. https://doi.org/10.1007/s10055-021-00524-3

53. Engbert R., Mergenthaler K. Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences. 2006; 103(18): 7192–7. https://doi.org/10.1073/pnas.0509557103

54. Shibata T., Kim J., Hoffman D.M., Banks M.S. The zone of comfort: predicting visual discomfort with stereo displays. Journal of Vision. 2011; 11(8): 1–29. https://doi.org/10.1167/11.8.11

55. Turnbull P.R., Phillips J.R. Ocular effects of virtual reality headset wear in young adults. Scientific reports. 2017; 7(1): 1–9. https://doi.org/10.1038/s41598-017-16320-6

56. Yoon H.J., Kim J., Park S.W., Heo H. Influence of virtual reality on visual parameters: immersive versus non-immersive mode. BMC ophthalmology. 2020; 20: 1–8. https://doi.org/10.1186/s12886-020-01471-4

57. Kim J., Sunil K., Yoo J., Kwon S. Change of Blink Rate in Viewing Virtual Reality with HMD. Symmetry. 2018; 10(9): 400. https://doi.org/10.3390/sym10090400

58. Palmisano S., Allison R.S., Schira M.M., Barry R.J. Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front. Psychol. 2015; 6, 193. https://doi.org/10.3389/fpsyg.2015.00193

59. Suh A., Prophet J. The state of immersive technology research: A literature analysis. Computers in Human Behavior. 2018; 86: 77–90. https://doi.org/10.1016/j.chb.2018.04.019

60. Weech S., Kenny S., Barnett-Cowan M. Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Frontiers in psychology. 2019; 10: 158. https://doi.org/10.3389/fpsyg.2019.00158

61. Cooper N., Milella F., Cant I., Pinto C., White M.D., Meyer G.F. The effects of multisensory cues on the sense of presence and task performance in a virtual reality environment. Perception. 2016; 45: 332–3.


Рецензия

Для цитирования:


Глухов Д.В., Калинина С.А., Меркулова А.Г. Особенности влияния технологий виртуальной реальности на состояние здоровья работников. Медицина труда и промышленная экология. 2023;63(11):715-722. https://doi.org/10.31089/1026-9428-2023-63-11-715-722. EDN: xjhmcc

For citation:


Glukhov D.V., Kalinina S.A., Merkulova A.G. The impact of virtual reality technologies on the health of employees. Russian Journal of Occupational Health and Industrial Ecology. 2023;63(11):715-722. (In Russ.) https://doi.org/10.31089/1026-9428-2023-63-11-715-722. EDN: xjhmcc

Просмотров: 281


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)