Preview

Russian Journal of Occupational Health and Industrial Ecology

Advanced search

The influence of physical occupational factors on the immune system

https://doi.org/10.31089/1026-9428-2023-63-11-694-701

EDN: hansax

Abstract

Environmental factors can influence various parts of the immune system, potentiating the formation of immunopathological processes underlying the development of a large group of diseases.

The study aims to analyze the results of experimental and observational studies to assess the effect of noise, vibration, and electromagnetic fields (EMF) on immunological parameters.

Among the mechanisms of the influence of physical factors on the immune system, most authors single out the action through the neuroendocrine system and the potentiation of oxidative stress.

Experimental studies on laboratory animals to assess the effects of noise on the immune system demonstrate the effect of noise on cellular and humoral immunity, the intensity of an allergic reaction, and sensitivity to infectious agents.

The results of surveys of workers exposed to industrial vibration indicate the influence of this production factor on humoral, cellular immunity, and cytokine status, however, the detected changes in these immunological parameters may be multidirectional.

In vitro experimental studies indicate that after exposure to EMF on immune cells, numerous changes are detected in them. There are studies demonstrating changes in the immune system in people exposed to EMF.

Thus, the analysis of literary sources indicates the influence of physical production factors (noise, vibration, EMF) on the immune status of the body, which determines the prospects of research aimed at developing criteria for evaluating changes in immunological parameters to identify groups at increased risk of developing pathology.

Contribution:
Kuzmina L.P. — concept and design of the review, editing;
Izmerova N.I. — concept and design of the review, editing;
Khotuleva A.G. — collection, processing of material and writing the text;
Tsidilkovskaya E.S. — collection, processing of material and writing the text;
Kislyakova A.A. — collection, processing of material;
Mili H. — collecting material.

Funding. The study had no funding.

Conflict of interests. The authors declare no conflict of interests.

Received: 28.11.2023 / Accepted: 01.12.2023 / Published: 15.12.2023

About the Authors

Lyudmila P. Kuzmina
Izmerov Research Institute of Occupational Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


Natalia I. Izmerova
Izmerov Research Institute of Occupational Health
Russian Federation


Anastasia G. Khotuleva
Izmerov Research Institute of Occupational Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

The senior researcher аt the Laboratory of Biomedical Research, Izmerov Research Institute of Occupational Health, Cand. of Sci. (Med.)

e-mail: hotuleva_an@mail.ru



Elvira S. Tsidilkovskaya
Izmerov Research Institute of Occupational Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


Agata A. Kisljakova
Izmerov Research Institute of Occupational Health
Russian Federation


Haithem Mili
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


References

1. Zhigulina V.V. Biochemical response to stress (overview). Tverskoj medicinskij zhurnal. 2015; 1: 91–100. (in Russian).

2. Chapel H., Haeney М., Misbah S. Essentials of clinical immunology. M.: GEOTAR-Media; 2008 (in Russian).

3. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2022: State report. М.: Federal’naja sluzhba po nadzoru v sfere zashhity prav potrebitelej i blagopoluchija cheloveka, 2023 (in Russian).

4. Kurchevenko S.I., Bodienkova G.M. Formation of natural body reactivity when exposed to industrial physical factors. XXI vek. Tehnosfernaja bezopasnost’. 2016; 1(4): 73–78 (in Russian).

5. Zhang A., Zou T., Guo D., Wang Q., Shen Y., Hu H. et al. The Immune System Can Hear Noise. Front Immunol. 2020; 11: 619189. https://doi.org/10.3389/fimmu.2020.619189

6. Bodienkova G.M., Ivanskaya T.I., Lizarev A.A. Immunological pathogenesis of vibration-induced disease. Bjulleten’ VSNC SO RAMN. 2006; 49(3): 72–77 (in Russian).

7. Abisheva A.A., Belikhina T.I., Kazimov M.S., Zhunusova T., Manarbekov E.M. Multifactorial negative anthropogenic impact and the immune system in adults in Ust-Kamenogorsk. Nauka i Zdravoohranenie. 2021; 4(23): 172–179. https://doi.org/10.34689/SH.2021.23.4.019 (in Russian).

8. Padgett D.A., Glaser R. How stress influences the immune response. Trends Immunol. 2003; 24: 444–448. https://doi.org/10.1016/S1471-4906(03)00173-X

9. Gille G., Sigler K. Oxidative stress and living cells. Folia Microbiol (Praha). 1995; 40(2): 131–152 https://doi.org/10.1007/BF02815413

10. Ising H. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise and health. 2000; 31(7): 7–24.

11. Selander J., Bluhm G., Theorell T., Pershagen G., Babisch W., Seiffert I. et al. Saliva cortisol and exposure to aircraft noise in six European countries. Environ. Health Perspect. 2009; 117: 1713–1717. https://doi.org/10.1289/ehp.0900933

12. Fouladi D.B., Nassiri P., Monazzam E.M., Farahani S., Hassanzadeh G., Hoseini M. Industrial noise exposure and salivary cortisol in blue collar industrial workers. Noise & Health. 2012; 14(59): 184–189. https://doi.org/10.4103/1463-1741.99894

13. Schmidt F.P., Basner M., Kroger G., Weck S., Schnorbus B., Muttray A. et al. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur. Heart J. 2013; 34: 3508–3514. https://doi.org/10.1093/eurheartj/eht269

14. Padgett D.A., Glaser R. How stress influences the immune response. Trends in Immunology. 2003; 24(8): 444–448. https://doi.org/10.1016/s1471-4906(03)00173-x

15. Rickard A.J., Young M.J. Corticosteroid receptors, macrophages and cardiovascular disease. Journal of Molecular Endocrinology. 2009; 42(6): 449–459. https://doi.org/10.1677/JME-08-0144

16. Hartono H. Cortisol level decreases natural killer cell activity among women with aircraft noise. Universa Medicina. 2016; 29(3): 153–161. https://doi.org/10.18051/UnivMed.2010.v29.153-161

17. Imai K., Matsuyama S., Miyake S., Suga K., Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000; 356(9244): 1795–1799. https://doi.org/10.1016/S0140-6736(00)03231-1

18. Ljunggren H.G., Malmberg K.J. Prospects for the use of NK cells in immunotherapy of human cancer. Nature Reviews Immunology. 2007; 7(5): 329–339. https://doi.org/10.1038/nri2073

19. Voblikov I.V. Assessment of the role of the immune system in the development of health disorders in individuals exposed to low-frequency acoustic vibrations during professional activities. In book.: Aktual’nye problemy i perspektivy razvitija voennoj mediciny: nauch. tr. NIIC (MBZ) GNIIIVM MO RF. SPb., 2000; 2: 55–60 (in Russian).

20. Sayfullin R.F., Seleznev A.B., Sergeev S.N., Stepanov A.V., Komissarov N.V., Gordienko A.V. Experimental evaluation of resistance of the organism to infectious diseases in conditions of low-frequency noise. Vestnik Rossijskoj Voenno-medicinskoj akademii. 2017; 1(57): 105–110 (in Russian).

21. Zheng K.C., Ariizumi M. Modulations of immune functions and oxidative status induced by noise stress. J Occup Health. 2007; 49(1): 32–38. https://doi.org/10.1539/joh.49.32

22. Münzel T., Sørensen M., Schmidt F., Schmidt E., Steven S., Kröller-Schön S. et al. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid Redox Signal. 2018; 28(9): 873–908. https://doi.org/10.1089/ars.2017.7118

23. Kriuchkova E.N., Antoshina L.I., Zheglova A.V., Saarkoppel’ L.M. Criterial value of oxidative stress parameters in exposure to vibration. Medicina truda i promyshlennaja jekologija. 2016; 3: 30–34 (in Russian).

24. Schuermann D., Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci. 2021; 22(7): 3772. https://doi.org/10.3390/ijms22073772

25. Yang Y., Bazhin A.V., Werner J., Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013; 32(3): 249–270. https://doi.org/10.3109/08830185.2012.755176

26. Lotze M.T., Zeh H.J., Rubartelli A., Sparvero L.J., Amoscato A.A., Washburn N.R. et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007; 220: 60–81. https://doi.org/10.1111/j.1600-065X.2007.00579.x

27. Gill R., Tsung A., Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010; 48: 1121–1132. https://doi.org/10.1016/j.freeradbiomed.2010.01.006

28. Tseylikman V.E., Lukin A.A. On the effect of oxidative stress on the human body. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2022; 3(117): 206–211. https://doi.org/10.23670/IRJ.2022.117.3.037 (in Russian).

29. Casciola-Rosen L., Wigley F., Rosen. A. Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions: implications for pathogenesis. Journal of Experimental Medicine. 1997. 185(1): 71–79. https://doi.org/10.1084/jem.185.1.71

30. Buttari B., Profumo E., Mattei V., Siracusano A., Ortona E., Margutti P. et al. Oxidized 2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response. Blood. 2005; 106(12): 3880–3887. https://doi.org/10.1182/blood-2005-03-1201

31. Pluzhnikov N.N., Vladimirov V.G., Zinkin V.N., Voblikov I.V., Vasilyeva I.N., Rodionov G.G. et al. The study of certain mechanisms of injurious effects of low-frequency noise. Radiacionnaja biologija. Radiojekologija. 2001; 41(1): 67‒72 (in Russian).

32. Akhmetzyanov I.M., Redko А.А., Sergeev О.Е. Nonspecific effects of noise on the body: adverse effects on human health and possible ways of prevention. In book: Zashhita naselenija ot povyshennogo shumovogo vozdejstvija: sb. dokl. Vseross. nauchn.-prakt. konf. s mezhdunar. uchastiem. INNOVA; 2006: 168–173. (in Russian)

33. Recio A., Linares C., Banegas J.R., Dı́az J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environ Res. 2016; 146: 359–370. https://doi.org/10.1016/j.envres.2015.12.036

34. Pascuan C.G., Uran S.L., Gonzalez-Murano M.R., Wald M.R., Guelman L.R., Genaro A.M. Immune alterations induced by chronic noise exposure: comparison with restraint stress in BALB/c and C57Bl/6 mice. J Immunotoxicol. 2014; 11: 78–83. https://doi.org/10.3109/1547691X.2013.800171

35. Kim A., Sung J.H., Bang J.-H., Cho S.W., Lee J., Sim C.S. Effects of self-reported sensitivity and road-traffic noise levels on the immune system. PloS One. 2017; 12(10): e0187084. https://doi.org/10.1371/journal.pone.0187084

36. Zinkin V.N., Svidovyi V.I., Akhmetzyanov I.M. Adverse effects of low-frequency acoustic vibrations on the respiratory system. Profilakticheskaja i klinicheskaja medicina. 2011; 3(40): 280–284 (in Russian).

37. She X., Gao X., Wang K., Yang H., Ma K., Cui B. et al. Effects of noise and low-concentration carbon monoxide exposure on rat immunity. J. Occup. Health. 2021; 63(1): e12235. https://doi.org/10.1002/1348-9585.12235

38. Angrini M.A., Leslie J.C. Vitamin C attenuates the physiological and behavioural changes induced by long-term exposure to noise. Behav Pharmacol. 2012; 23(2): 119–125. https://doi.org/10.1097/FBP.0b013e32834f9f68

39. Van Raaij M.T., Oortgiesen M., Timmerman H.H., Dobbe C.J., Van Loveren H. Time-Dependent Differential Changes of Immune Function in Rats Exposed to Chronic Intermittent Noise. Physiol Behav. 1996; 60: 1527–1533. https://doi.org/10.1016/s0031-9384(96)00327-7

40. Lycheva O.A., Galiev R.S. Influence of city noise on development of immediate-onset allergy. Jekologija cheloveka. 2012; 4: 11–15 (in Russian).

41. Galiev R.S., Droblenkov A.V., Galieva S.A. Structural specific features of the course of allergy in noise conditions. Medicina i obrazovanie. 2020; 2(6): 10–14 (in Russian).

42. Kurchevenko S.I., Boklazhenko E.V., Bodienkova G.M. Comparative analysis of the immune response of workers exposed to various production factors. Gigiena i sanitarija. 2018; 97(10): 905–909. https://elibrary.ru/yocquh (in Russian).

43. Fujioka M., Kanzaki S., Okano H.J., Masuda M., Ogawa K., Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J. Neurosci. Res. 2006; 83(4): 575–583. https://doi.org/10.1002/jnr.20764

44. Tan W.J., Thorne P.R., Vlajkovic S.M. Noise-induced cochlear inflammation. World J Otorhinolaryngol. 2013; 3(3): 89–99. https://doi.org/10.5319/wjo.v3.i3.89

45. Rai V., Wood M.B., Feng H., Schabla N.M., Tu S., Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci. Rep. 2020; 10(1): 15167. https://doi.org/10.1038/s41598-020-72181-6

46. Lin F., Zheng Y., Pan L., Zuo Z. Attenuation of noisy environment-induced neuroinflammation and dysfunction of learning and memory by minocycline during perioperative period in mice. Brain Res. Bull. 2020; 159: 16–24. https://doi.org/10.1016/j.brainresbull.2020.03.004

47. Cui B., Su D., Li W., She X., Zhang M., Wang R. et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease. J. Neuroinflammation. 2018; 15(1): 190. https://doi.org/10.1186/s12974-018-1223-4

48. Wang Q., Shen Y., Hu H., Fan C., Zhang A, Ding R et al. Systematic Transcriptome Analysis of Noise-Induced Hearing Loss Pathogenesis Suggests Inflammatory Activities and Multiple Susceptible Molecules and Pathways. Front Genet. 2020; 11: 968. https://doi.org/10.3389/fgene.2020.00968

49. Dzhambov A.M., Dimitrova D.D. Lifetime exposure to self-reported occupational noise and prevalent rheumatoid arthritis in the National Health and Nutrition Examination Survey (2011-2012). Int. J. Occup. Environ. Health. 2017; 23(3): 215–221. https://doi.org/10.1080/10773525.2018.1451809

50. De Roos A.J., Koehoorn M., Tamburic L., Davies H.W., Brauer M. Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis. Environ. Health Perspect. 2014; 122: 1075–1080. https://doi.org/10.1289/ehp.1307413

51. Baraeva R.A., Babanov S.A. Immune profile in vibration disease from exposure to local and general vibration. Sanitarnyj vrach. 2015; 7: 11–19 (in Russian).

52. Babanov S., Baraeva R. Cellular immunity indicators and cytokine profile in vibration disease. Vrach. 2017; 1: 53–56 (in Russian).

53. Kiryakov V.A., Pavlovskaya N.A., Lapko I.V., Bogatyreva I.A., Antoshina L.I., Oshkoderov O.A. Impact of occupational vibration on molecular and cell level of human body. Med. truda i prom. ekol. 2018; 9: 34–43. https://doi.org/10.31089/1026-9428-2018-9-34-43 (in Russian).

54. Castro A.P., Aguas A.P., Grande N.R., Monteiro E., Castelo N.A. Increase in CD8+ and CD4+ T-lymphocytes in patients with vibroacoustic disease. Aviat Space Environ Med. 1999; 70 (3 Pt 2): A141–A144.

55. Kurchevenko S.I., Bodienkova G.M., Lakhman O.L. Comparative characteristics of the subpopulation composition of lymphocytes and heat shock protein in patients with vibration disease. Rossijskij immunologicheskij zhurnal. 2019; 13(2–2): 846–848. https://doi.org/10.31857/S102872210006677-9 (in Russian).

56. Antoshina L.I., Saarkoppel L.M., Pavlovskaya N.A. Influence of vibration on biochemical values characterizing oxidative metabolism, immunity, metabolism in muscular and connective tissues (review of literature). Med. truda i prom. ekol. 2009; 2: 32–37 (in Russian).

57. Azovskova T.A., Lavrentieva N.E. Сhange of immune homeostasis exposed to production vibration. Medicinskij Sovet. 2016; 10: 174–176. https://doi.org/10.21518/2079-701X-2016-10-174-176 (in Russian).

58. Kurchevenko S.I., Bodienkova G.M. The pre-nosologic diagnostic of vibration disease. Klinicheskaya Laboratornaya Diagnostika. 2017; 8: 482–485. https://elibrary.ru/zfmcxh (in Russian)

59. Azovskova T.A., Lavrentyeva N.E. About the role of immune system in the pathogenesis of vibration disease. Farmateka. 2016; 10: 14–16 (in Russian).

60. Simbirtsev A.S. Cytokines in the pathogenesis and treatment of human diseases. SPb: Foliant; 2018 (in Russian).

61. Serebrennikova S.N., Seminsky I.Zh. The role of cytokines in the inflammatory process. Sibirskij medicinskij zhurnal. 2008; 81(6): 5–8 (in Russian).

62. Kryuchkova E.N., Saarkoppel L.M., Yatsyna I.V. Features of immune response in chronic exposure to industrial aerosols. Gigiena i sanitarija. 2016; 95(11): 1058–1061. https://elibrary.ru/xsnrrb (in Russian).

63. Bodienkova G.M., Kurchevenko S.I. Neuroim-mune endocrine relationships under exposure to local vibration in workers. Med. truda i prom. ekol. 2015; 4: 39–43 (in Russian).

64. Bodienkova G.M., Kurchevenko S.I. The relationship between the cytokine concentrations and levels of antibodies to neuronal proteins in workers who were exposed to vibration. Nejrohimija. 2016; 33(1): 85–89. https://doi.org/10.7868/S1027813316010039 (in Russian).

65. Bodienkova G.M., Kurchevenko S.I. Assessment of inflammation mediators under exposure to the vibration in employees in dependence on pronouncement of the pathological process. Gigiena i sanitarija. 2017; 96(5): 460–462. https://elibrary.ru/ysqdhb (in Russian)

66. Boklazhenko E.V., Bodienkova G.M. Imbalance in lymphocyte composition and cytokine profile as a risk factor of vibration disease. Analiz riska zdorov’ju. 2022; 1: 140–145. https://doi.org/10.21668/health.risk/2022.1.15 (in Russian).

67. Bodienkova G.M., Kurchevenko S.I., Rusanova D.V. Neuroautoimmune processes in vibration disease. Nejrohimija. 2018; 35(3): 269–274. https://doi.org/10.1134/S1027813318030020 (in Russian).

68. Rosado M.M., Simko M., Mattsson, M.O., Pioli C. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Front. Public Health. 2018; 6: 85. https://doi.org/10.3389/fpubh.2018.00085

69. Manna D., Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn. Biol. Med. 2016; 35: 265–301. https://doi.org/10.3109/15368378.2015.1092158

70. Szemerszky R., Zelena D., Barna I., Bardos G. Stress-related endocrinological and psychopathological effects of short-and long-term 50 Hz electromagnetic field exposure in rats. Brain research bulletin. 2010; 81(1): 92–99. https://doi.org/10.1016/j.brainresbull.2009.10.015

71. Klimek A., Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor — Really Detrimental? — Insight into Literature from the Last Decade. Brain Sci. 2021; 11: 174. https://doi.org/10.3390/brainsci11020174

72. Piszczek P., Wójcik-Piotrowicz K., Gil K., Kaszuba-Zwoińska J. Immunity and electromagnetic fields. Environ Res. 2021; 200: 111505. https://doi.org/10.1016/j.envres.2021.111505

73. Pall M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013; 17(8): 958–965. https://doi.org/10.1111/jcmm.12088

74. Yao C., Zhao L., Peng R. The biological effects of electromagnetic exposure on immune cells and potential mechanisms. Electromagn Biol Med. 2022; 41(1): 108–117. https://doi.org/10.1080/15368378.2021.2001651

75. Ichinose T.Y., Burch J.B., Noonan C.W., Yost M.G., Keefe T.J., Bachand A. et al. Immune markers and ornithine decarboxylase activity among electric utility workers. J. Occup. Environ. Med. 2004; 46(2): 104–112. https://doi.org/10.1097/01.jom.0000111963.64211.3b

76. Boscolo P., Bergamaschi A., Di Sciascio M.B., Benvenuti F., Reale M., Di Stefano F. et al. Effects of low frequency electromagnetic fields on expression of lymphocyte subsets and production of cytokines of men and women employed in a museum. Sci. Total Environ. 2001; 270(1–3): 13–20. https://doi.org/10.1016/s0048-9697(00)00796-8

77. Boscol P., Di Sciascio M.B., D’Ostilio S., Del Signore A., Reale M., Conti P. et al. Effects of electromagnetic fields produced by radiotelevision broadcasting stations on the immune system of women. Sci Total Environ. 2001; 273(1–3): 1–10. https://doi.org/10.1016/s0048-9697(01)00815-4

78. Gobba F., Bargellini A., Bravo G., Scaringi M., Cauteruccio L., Borella P. Natural killer cell activity decreases in workers occupationally exposed to extremely low frequency magnetic fields exceeding 1 microT. Int J Immunopathol Pharmacol. 2009; 22(4): 1059–1066. https://doi.org/10.1177/039463200902200422

79. Bonhomme-Faivre L., Marion S., Bezie Y., Auclair H., Fredj G., Hommeau C. Study of human neurovegetative and hematologic effects of environmental low-frequency (50-Hz) electromagnetic fields produced by transformers. Arch. Environ. Health. 1998; 53(2): 87–92. https://doi.org/10.1080/00039896.1998.10545968

80. Tuschl H., Neubauer G., Schmid G., Weber E., Winker N. Occupational exposure to static, ELF, VF and VLF magnetic fields and immune parameters. Int. J. Occup. Med. Environ. Health. 2000; 13(1): 39–50.


Review

For citations:


Kuzmina L.P., Izmerova N.I., Khotuleva A.G., Tsidilkovskaya E.S., Kisljakova A.A., Mili H. The influence of physical occupational factors on the immune system. Russian Journal of Occupational Health and Industrial Ecology. 2023;63(11):694-701. (In Russ.) https://doi.org/10.31089/1026-9428-2023-63-11-694-701. EDN: hansax

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)