Preview

Медицина труда и промышленная экология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения

https://doi.org/10.31089/1026-9428-2021-61-9-580-587

Полный текст:

Аннотация

Введение. Проблема сравнения медико-биологических эффектов острого облучения (включая аварийное и после ядерных катастроф) с эффектами фракционированного и хронического воздействия возникла с первых этапов развития радиационных дисциплин. В эксперименте было не раз обнаружено, что выход различных последствий лучевой экспозиции снижается в зависимости от уровня (мощности) дозы, поскольку клетки имеют время на восстановление от сублетальных повреждений.

Цель исследования — сравнение избыточного относительного риска (ERR на 1 Зв) смертности от солидных раков при остром — катастрофическом либо аварийном, и профессиональном — фракционированном или хроническом облучении.

Материалы и методы. Поддерживаемая база данных (база источников) по работникам ядерной индустрии из порядка 40 стран, на основе которой проведён объединяющий анализ данных для определения интегральной величины ERR на 1 Гр по смертности от раков для сравнения с показателями когорт, подвергавшихся катастрофическому и аварийному облучению: когорта LSS пострадавших от атомных бомбардировок в Японии, резиденты реки Теча (радиоактивное загрязнение из-за выбросов с ПО «Маяк») и российские ликвидаторы аварии на Чернобыльской АЭС.

Результаты. Сравнение величины ERR смертности от раков на 1 Зв для работников мировой ядерной индустрии (объединяющий анализ данных 37 исследований) с показателями когорты LSS, резидентов на реке Теча и ликвидаторов аварии на Чернобыльской АЭС продемонстрировало отсутствие поддающихся логике и принципиальных отличий, причём риски для двух последних когорт были наиболее высоки.

Хотя полученные данные отчасти подтверждают подход последних лет Научного комитета по действию атомной радиации ООН, согласно которому канцерогенные эффекты острого, аварийного, и фракционированного или хронического лучевых воздействий не зависят от фактора мощности дозы (DDREF), тем не менее, с учётом биологических механизмов и данных радиобиологических экспериментов, этот вопрос не может считаться однозначно решённым.

Выводы. Исходя из ERR на 1 Зв, из средней дозы внешнего облучения, а также из величины ежегодной фоновой смертности от рака в России и США, ожидаемая прибавка смертности от раков для 100 тыс. работников ядерной индустрии составит в среднем 32–69 человек за 10 лет (0,032–0,069% от группы). Подобные риски, в связи со множеством канцерогенных нелучевых факторов жизни и работы, равно как и колебаний фонового значения, невозможно учитывать в практике медицины и здравоохранения.

Об авторах

Алексей Николаевич Котеров
ФГБУ «Государственный научный центр Российской федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна» ФМБА России
Россия

Зав. лабораторией ФГБУ «Государственный научный Центр РФ — Федеральный биофизический центр им. А.И. Бурназяна» ФМБА России, д-р биол. наук.

e-mail: govorilga@inbox.ru



Л. Н. Ушенкова
ФГБУ «Государственный научный центр Российской федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна» ФМБА России
Россия


М. В. Калинина
ФГБУ «Государственный научный центр Российской федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна» ФМБА России
Россия


А. П. Бирюков
ФГБУ «Государственный научный центр Российской федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна» ФМБА России
Россия


Список литературы

1. UNSCEAR 1958. Report to the General Assembly, with Scientific Annexes. Annex G. Mammalian somatic effects. United Nations. New York, 1958; 153-71.

2. UNSCEAR 1962. Report to the General Assembly, with Scientific Annexes. Annex D. Somatic effects of radiation. United Nations. New York, 1962; 118-206.

3. UNSCEAR 2000. Report to the General Assembly, with Scientific Annex G. Biological effects at low radiation doses. United Nations. New York, 2000; 73-175.

4. Berrington de Gonzalez A., Bouville A., Rajaraman P., Schubauer-Berigan M. Ionizing Radiation. In: "Schottenfeld and Fraumeni Cancer Epidemiology and Prevention". Fourth edition. Ed. by M.J. Thun et al. New York: Oxford University Press. Printed by Sheridan Books, Inc., USA; 2018: 227-248.

5. UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes. Annex A. Attributing health effects to ionizing radiation exposure and inferring risks. United Nations. New York; 2015.

6. Muirhead C.R., Cox R., Stather J.W. et al. Estimates of late radiation risks to the UK population. Documents of the NRPB. 1993; 4(4): 13-157.

7. UNSCEAR 1993. Report to the General Assembly, with Scientific Annex. Annex F. Influence of dose and dose rate on stochastic effects of radiation. United Nations. New York, 1993; 619-727.

8. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam - New York: Elsevier; 2007.

9. National Research Council, Division on Earth and Life Studies, Board on Radiation Effects Research, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. Phase 2. National Academies Press; 2006.

10. Ozasa K., Shimizu Y., Suyama A. et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat. Res. 2012; 177(3): 229-43. https://doi.org/10.1667/rr2629.1

11. Cardis E., Vrijheid M., Blettner M. et al. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Brit. Med. J. 2005; 331(7508): 77-82. https://doi.org/10.1136/bmj.38499.599861.E0

12. Cardis E., Vrijheid M., Blettner M. et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 2007; 167(4): 396-416. https://doi.org/10.1667/RR0553.1

13. Vrijheid M., Cardis E., Ashmore P. et al. Ionizing radiation and risk of chronic lymphocytic leukemia in the 15-country study of nuclear industry workers. Radiat. Res. 2008; 170(5): 661-5. https://doi.org/10.1667/RR1443.1

14. UNSCEAR 2017. Report to the General Assembly, with Scientific Annexes. Annex B. Epidemiological studies of cancer risk due to low-dose-rate radiation from environmental sources. United Nations. - New York; 2018: 65-184.

15. UNSCEAR 2019. Report to the General Assembly, with Scientific Annexes. Annex A. Evaluation of selected health effects and inherence of risk due to radiation exposure. United Nations. - New York, 2020; 65-184.

16. Ruhm W., Woloschak G.E., Shore R.E. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. Radiat. Environ. Biophys. 2015; 54(4): 379-401. https://doi.org/10.1007/s00411-015-0613-6

17. Wakeford R. Nuclear worker studies: promise and pitfalls. Br. J. Cancer. 2014; 110(1): 1-3. https://doi.org/10.1038/bjc.2013.713

18. Dauer L.T., Brooks A.L., Hoel D.G. et al. Review and evaluation of updated researches on the health effects associated with low-dose ionizing radiation (addition to BEIR-VII). Radiat. Prot. Dosim. 2010; 140(2): 103-36. https://doi.org/10.1093/rpd/ncq141

19. Blettner M., Sauerbrei W., Schlehofer B. et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int. J. Epidemiol. 1999; 28(1): 1-9. https://doi.org/10.1093/ije/28.1.1

20. Bravata D.M., Olkin I. Simple pooling versus combining in meta-analysis. Eval. Health Prof. 2001; 24(2): 218-230. https://doi.org/10.1177/01632780122034885

21. Mostarac P., Malaric R., Hegedusi H. Comparison of outliers elimination algorithms. Proc. 7th Intern. Conf., Smolenice, Slovakia. Measurement. 2009; 49-52. Also table "Chauvenet’s criterion for rejecting a reading": https://chetaero.files.wordpress.com/2016/11/chauvenet.pdf (address data 2021/03/21)

22. Beral V., Fraser P., Carpenter L. et al. Mortality of employees of the Atomic Weapons Establishment, 1951-1982. British Med. J. 1988; 297(6651): 757-70. https://doi.org/10.1136/bmj.297.6651.757

23. Fraser P.L. Carpenter N. Maconochie C. et al. Cancer mortality and morbidity in employees of the United Kingdom Atomic Energy Authority, 1946-86. Brit. J. Cancer. 1993; 67(3): 615-24. https://doi.org/10.1038/bjc.1993.113

24. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946-95. J. Radiol. Prot. 2000; 20(2): 111-37. https://doi.org/10.1088/0952-4746/20/4/303

25. Douglas A.J., Omar R.Z., Smith P.G. Cancer mortality and morbidity among workers at the Sellafield plant of British Nuclear Fuels. Brit. J. Cancer. 1994; 70(6): 1232-43. https://doi.org/10.1038/sj.bjc.6690207

26. Kendall G.M., Muirhead C.R., Mac Gibbon B.H. et al. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. Brit. Med. J. 1992; 304(6821): 220-5. https://doi.org/10.1136/bmj.304.6821.220

27. Russ A., Burns C., Tuler S., Taylor O. Health risks of ionizing radiation: an overview of epidemiological studies. A Report by the Community-Based Hazard Management Program. George Perkins Marsh Institute. Clark University. Worcester, MA 01610-1477. USA. March; 2006.

28. Gillies M., Haylock R. The cancer mortality and incidence experience of workers at British Nuclear Fuels plc, 1946-2005. J. Radiol. Prot. 2014; 34(3): 595-623. https://doi.org/10.1088/0952-4746/34/3/595

29. Haylock R.G.E., Gillies M., Hunter N. et al. Cancer mortality and incidence following external occupational radiation exposure: an update of the 3rd analysis of the UK national registry for radiation workers. Br. J. Cancer. 2018; 119(5): 631-7. https://doi.org/10.1038/s41416-018-0184-9

30. Gribbin M.A., Weeks J.L., Howe G.R. Cancer mortality (1956-1985) among male employees of Atomic Energy of Canada Limited with respect to occupational exposure to external low-linear-energy-transfer ionizing radiation. Radiat. Res. 1993; 133(3): 375-380. https://doi.org/10.2307/3578225

31. Zablotska L.B., Lane R.S., Thompson P.A. A reanalysis of cancer mortality in Canadian nuclear workers (1956-1994) based on revised exposure and cohort data. Br. J. Cancer. 2014; 110(1): 214-23. https://doi.org/10.1038/bjc.2013.592

32. Ashmore J.P., Sont W.N., Davies B.F. Analysis of medical workers dose records from the Canadian National Dose Registry. Radiat. Prot. Dosimetry. 1991; 36(2): 79-83. https://doi.org/10.1093/oxfordjournals.rpd.a080972

33. Ashmore J.P., Krewski D., Zielinski J.M. Protocol for a cohort mortality study of occupational radiation exposure based on the National Dose Registry of Canada. Eur. J. Cancer. 1997; 33(Suppl 3): S10-S21. https://doi.org/10.1016/S0959-8049(97)00018-X

34. Zielinski J.M., Shilnikova N.S., Krewski D. Canadian National Dose Registry of radiation workers: overview of research from 1951 through 2007. Int. J. Occup. Med. Environ. Health. 2008; 21(4): 269-275. https://doi.org/10.2478/v10001-008-0037-5

35. Sont W.N., Zielinski J.M., Ashmore J.P. et al. First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada. Am. J. Epidemiol. 2001; 153(4): 309-318. https://doi.org/10.1093/aje/153.4.309

36. Cardis E., Gilbert E.S., Carpenter L. et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat. Res. 1995; 142(2): 117-132. https://doi.org/10.2307/3579020

37. Ashmore J.P., Gentner N.E., Osborne R.V. Evaluation of the results of the study by the International Agency for Research on Cancer on the radiogenic cancer risk among workers in the Canadian nuclear industry. Unrestricted Report DSP-121100-REPT001 March 2007. Chalk River Laboratories Information Centre Chalk River, ON: Atomic Energy of Canada Limited. 2007.

38. Wing S., Shy C.M., Wood J.L. et al. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984. J. Am. Med. Assoc. 1991; 265(11): 1397-402. https://doi.org/10.1001/jama.1991.03460110063025

39. Wing S., Richardson D.B. Age at exposure to ionising radiation and cancer mortality among Hanford workers: follow up through 1994. Occup. Environ. Med. 2005; 62(7): 465-472. https://doi.org/10.1136/oem.2005.019760

40. Gilbert E.S., Cragle D.L., L.D. Wiggs. Updated analyses of combined mortality data for workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Weapons Plant. Radiat. Res. 1993b; 136(3): 408-421. https://doi.org/10.2307/3578555

41. Frome E.L., Cragle D.L., Watkins J.P. et al. A mortality study of employees of the nuclear industry in Oak Ridge, Tennessee. Radiat Res. 1997; 148(1): 64-80. https://doi.org/10.2307/3579540

42. Ashmore J.P., Gentner N.E., Osborne R.V. Incomplete data on the Canadian cohort may have affected the results of the study by the International Agency for Research on Cancer on the radiogenic cancer risk among nuclear industry workers in 15 countries. J. Radiol. Prot. 2010; 30(2): 121-129. https://doi.org/10.1088/0952-4746/30/2/001

43. Metz-Flamant C., Laurent O., Samson E. et al. Mortality associated with chronic external radiation exposure in the French combined cohort of nuclear workers. Occup. Environ. Med. 2013; 70(9): 630-638. https://doi.org/10.1136/oemed-2012-101149

44. Fournier L., Clero E., Samson E. et al. Impact of considering non-occupational radiation exposure on the association between occupational dose and solid cancer among French nuclear workers. Occup. Environ. Med. 2018; 75(3): 199-204. https://doi.org/10.1136/oemed-2017-104341

45. Leuraud K., Fournier L., Samson E. et al. Mortality in the French cohort of nuclear workers. Radioprotection. 2017; 52(3): 199-210. https://doi.org/10.1051/radiopro/2017015

46. Ivanov V.K., Tsyb A.F., Agapov A.M. et al. Concept of optimisation of the radiation protection system in the nuclear sector: management of individual cancer risks and providing targeted health care. J. Radiol. Prot. 2006; 26(4): 361-74. https://doi.org/10.1088/0952-4746/26/4/001

47. Shilnikova N.S., Preston D.L., Ron E. et al. Cancer mortality risk among workers at the Mayak nuclear complex. Radiat. Res. 2003; 159(6): 787-98. https://doi.org/10.1667/0033-7587(2003)159[0787:cmrawa]2.0.co;2

48. Akiba S., Mizuno S. The third analysis of cancer mortality among Japanese nuclear workers, 1991-2002: estimation of excess relative risk per radiation dose. J. Radiol. Prot. 2012; 32(1): 73-83. https://doi.org/10.1088/0952-4746/32/1/73

49. Kudo S., Ishida J., Yoshimoto K. et al. Direct adjustment for confounding by smoking reduces radiation-related cancer risk estimates of mortality among male nuclear workers in Japan, 1999-2010. J. Radiol. Prot. 2018; 38(1): 357-71. https://doi.org/10.1088/1361-6498/aaa65c

50. Zablotska L.B., Ashmore J.P., Howe G.R. Analysis of mortality experience amongst Canadian nuclear power industry workers following chronic low-dose exposure to ionizing radiation. Radiat. Res. 2004; 161(6): 633-41. https://doi.org/10.1667/RR3170

51. Carpenter L., Higgins C., Douglas A. et al. Combined analysis of mortality in three United Kingdom nuclear industry workforces, 1946-1988. Radiat. Res. 1994; 138(2): 224-238.

52. Carpenter L.M., Higgins C.D., Douglas A.J. et al. Cancer mortality in relation to monitoring for radionuclide exposure in three UK nuclear industry workforces. Brit. J. Cancer. 1998; 78(9): 1224-32. https://doi.org/10.1038/bjc.1998.659.

53. Muirhead C.R., Goodill A.A., Haylock R.G. et al. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. J. Radiol. Prot. 1999; 19(1): 3-26. https://doi.org/10.1088/0952-4746/19/1/002

54. Muirhead C.R., O’Hagan. J.A., Haylock R.G.E. et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br. J. Cancer. 2009; 100(1): 206-212. https://doi.org/10.1038/sj.bjc.6604825

55. Thierry-Chef M., Marshall J.J., Fix F.B. et al. The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: Study of Errors in Dosimetry. Radiat. Res. 2007; 167(4): 380-395. https://doi.org/10.1667/RR0552.1

56. Vrijheid M., Cardis E., Blettner M. et al. The 15-Country Collaborative Study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat. Res. 2007; 167(4): 361-79. https://doi.org/10.1667/RR0554.1

57. Daniels R.D., Bertke S.J., Richardson D.B. et al. Examining temporal effects on cancer risk in the International Nuclear Workers’ Study. Int. J. Cancer. 2017; 140(6): 1260-69. https://doi.org/10.1002/ijc.30544

58. Richardson D.B., Cardis E., Daniels R.D. et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). Br. Med. J. 2015; 351: Article h5359. https://doi.org/10.1136/bmj.h5359

59. Laurier D., Richardson D.B., Cardis E. et al. The International Nuclear Workers Study (Inworks): A collaborative epidemiological study to improve knowledge about health effects of protracted low-dose exposure. Radiat. Prot. Dosimetry. 2017; 173(1-3): 21-5. https://doi.org/10.1093/rpd/ncw314

60. Krestinina L.Y., Preston D.L., Ostroumova E.V. et al. Protracted radiation exposure and cancer mortality in the Techa River Cohort. Radiat. Res. 2005; 164(5): 602-11. https://doi.org/10.1667/rr3452.1

61. Ivanov V.K., Karpenko S.V., Kashcheev V.V. et al. Relationship between follow-up periods and the low-dose ranges with statistically significant radiation-induced risk of all solid cancers in the Russian cohort of Chernobyl emergency workers. Radiat. Environ. Biophys. 2020; 59(3): 415-21. https://doi.org/10.1007/s00411-020-00850-1

62. Boice J.D., Jr. Ionizing Radiation. In: "Schottenfeld and Fraumeni Cancer Epidemiology and Prevention". 3rd edition. Ed. by D. Schottenfeld and J.F. Fraumeni. New York: Oxford University Press. 2006; 259-293.

63. Zeeb H., Merzenich H., Wicke H., Blettner M. Radiation Epidemiology. In: "Handbook of Epidemiology". 2nd Edition. Ed. by W. Ahrens, I. Pigeot. New York, Heidelberg, Dordrecht, London: Springer; 2014: 2003-37.

64. Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 1. Problem statement, conception of causes and causation, false associations. Biol. Bull. (Moscow). 2019; 46(11): 1458-88. https://doi.org/10.1134/S1062359019110165

65. Koterov A.N., Biryukov A.P. The possibility of determining of anomalies and pathologies in the offspring of liquidators of Chernobyl accident by the non-radiation factors. Int. J. Low Radiation (Paris). 2011; 8(4): 256-312. https://doi.org/10.1504/IJLR.2011.046529

66. Murata M., Miyake T., Inoue Y. et al. Lifestyle and other characteristics of radiation workers at nuclear facilities in Japan: base-line data of a questionnaire survey. J. Epidemiol. 2002; 12(4): 310-19. https://doi.org/10.2188/jea.12.310

67. Telle-Lamberton M., Samson E., Caer S. et al. External radiation exposure and mortality in a cohort of French nuclear workers. Occup. Environ. Med. 2007; 64(10): 694-700. https://doi.org/10.1136/oem.2007.032631

68. Wing S., Richardson D., Stewart A. The relevance of occupational epidemiology to radiation protection standards. New Solut. 1999; 9(2): 133-51. https://doi.org/10.2190/LBN7-2UAB-NJMQ-HDHA

69. Cole P. The epidemiologist as an expert witness. J. Clin. Epidemiol. 1991; 44(Suppl. 1): 35S-39S. https://doi.org/10.1016/0895-4356(91)90173-7.

70. USEPA 2002. A Review of the Reference Dose and Reference Concentration Processes. EPA/630/P-02/002F. Final Report. - Washington, DC: Risk Assessment Forum. National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency; 2002.

71. Gori G.B. Epidemiologic evidence in public and legal policy: reality or metaphor? Critical Legal Issues. Washington: Washington Legal Foundation. Working Paper Series No. 124; 2004.

72. Aschengrau A., Seage G.R., III. Epidemiology in Public Health. 3rd edition. - Burlington: Jones & Bartlett Learning, LLC; 2014.

73. Howick J., Glasziou P., Aronson J.K. The evolution of evidence hierarchies: what can Bradford Hill's 'guidelines for causation' contribute? J. R. Soc. Med. 2009; 102(5): 186-94. https://doi.org/10.1258/jrsm.2009.090020

74. Clarke B., Gillies D., Illari P., Russo F., Williamson J. The evidence that evidence-based medicine omits. Prev. Med. 2013; 57: 6: 745-7. https://doi.org/10.1016/j.ypmed.2012.10.020

75. Hill A.B. The environment and disease: association or causation? Proc. R. Soc. Med. 1965; 58(5): 295-300. https://doi.org/10.1177/0141076814562718

76. Hill A.B. Suspended judgment. Memories of the British streptomycin trial in tuberculosis: the first randomized clinical trial. Control. Clin. Trials. 1990; 11(2): 77-9. https://doi.org/10.1016/0197-2456(90)90001-i

77. Hill A.B. Medical ethics and controlled trials. Br. Med. J. 1963; 1(5337): 1043-9. https://doi.org/10.1136/bmj.1.5337.1043

78. Ferlay J., Soerjomataram I., Dikshit R. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015; 136(5): E359-E386. https://doi.org/10.1002/ijc.29210

79. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2020. CA Cancer J. Clin. 2019; 69: 7-34. https://doi.org/10.3322/caac.21590

80. Cogliano V.J., Baan R.A., Straif K. et al. The science and practice of carcinogen identification and evaluation. Environ. Health Perspect. 2004; 112(13): 1269-74. https://doi.org/10.1289/ehp.6950


Для цитирования:


Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения. Медицина труда и промышленная экология. 2021;61(9):580-587. https://doi.org/10.31089/1026-9428-2021-61-9-580-587

For citation:


Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Comparing the risk of mortality from solid cancer after radiation incidents and occupational radiation exposure. Russian Journal of Occupational Health and Industrial Ecology. 2021;61(9):580-587. (In Russ.) https://doi.org/10.31089/1026-9428-2021-61-9-580-587

Просмотров: 101


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)