Preview

Russian Journal of Occupational Health and Industrial Ecology

Advanced search

Radiation-hygienic support of work with nitride fuel for fast reactors: problems, achievements and prospects. Initial position

https://doi.org/10.31089/1026-9428-2021-61-9-558-566

Abstract

The article is devoted to the substantiation of the need to implement a special program of radiation-hygienic support of work with nitride fuel for fast neutron reactors. It is shown that at the current pace of implementation of the project direction "Breakthrough", in conditions when achievements in scientific research lead to a revision of design and technological solutions, it is possible to manage radiation and hygiene support only in a mode that provides a quick response to changes in the real production and environmental situation.

About the Authors

Marina R. Popchenko
A.I. Burnasyan Medical Biophysical Center
Russian Federation

Senior researcher, A.I. Burnasyan Medical Biophysical Center; PhD Chem.

e-mail: mar.popchenko@mail.ru



Alexander G. Tsovyanov
A.I. Burnasyan Medical Biophysical Center
Russian Federation


Sergei M. Shinkarev
A.I. Burnasyan Medical Biophysical Center
Russian Federation


Anatoly V. Simakov
A.I. Burnasyan Medical Biophysical Center
Russian Federation


Vladimir N. Klochkov
A.I. Burnasyan Medical Biophysical Center
Russian Federation


Igor P. Korenkov
A.I. Burnasyan Medical Biophysical Center
Russian Federation


References

1. Serebryakov V.V., Kirillovich A.P., Maershin A.A., Shishalov O.V., Orishchenko A.V. Radiation safety during fabrication the test fuel elements from recycled MOX fuel. Atomic Energy. 2005. 98(5): 351–60 (in Russian).

2. Alekseev S.V., Zaitsev V.A. Nitride fuel for nuclear power. M.: Tekhnosfera; 2013 (in Russian).

3. Ekberg C., Costa D.R., Hedberg M., Jolkkonen M. Nitride fuel for Gen IV nuclear power systems. J. Radioanal. Nucl. Chem. 2018; 318(3): 1713–25.

4. Fedorov M.S., Zhiganov A.N., Zozulya D.V., Baydakov N.A. Analysis of existing methods for uranium-plutonium mixed nitride fuel fabrication in Russia and abroad. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020; 63(6): 12–8. https://doi.org/10.6060/ivkkt.20206306.6185

5. SanPiN 2.6.1.2523-09. Radiation Safety Standards (NRB-99/2009) M. FCH&E OF THE INSPECTORATE FOR CUSTOMERS PROTECTION; 2009 (in Russian).

6. Kotelnikov R.B. Ed. High temperature nuclear fuel. M.: Atomizdat; 1978 (in Russian).

7. Vazhochuk A.I., Grib K.P., Kovtuzh A.M. Uranium nitride (state of technological development). Analytical review. Kharkov: KIPT AN UkrSSR, KIPT 80–21; 1980 (in Russian).

8. Dell R.M., Wheeler V.J., Mciver E.J. Oxidation Of Uranium Mononitride And Uranium Monocarbide. Transactions of the Faraday Society. 1966; 62: 3591–3606.

9. Pierson H.О. Ed. Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. New Jersey: Noyes Publications; 1996.

10. Bauer A.A. Nitride Fues: Properties and Potentials. Reactor Technology. 1972; 15(2): 87–104.

11. Astafjev V.A., Antipov S.A., Podkolzin D.G. Pelletized uranium-plutonium fuel production process. Patent RU 2068202 C1, 20.10.96 (in Russian).

12. Lashkov V.N., Yukhimchuk A.A. Tablet for manufacturing a thermal element of nuclear reactor on quick neutrons. Patent RU 2672256 C1, 13.11.2018 (in Russian).

13. Arai Y., Maeda А., Shiozawa К., Оhnuсlu Т. Chemical forms of Solid fission products in the irradiated uranium-рlutоnium mixed nitride fuel. J. Nucl. Mater. 1994; 210: 161–6.

14. Rresults of U0,55Pu0,45N and U0,4Pu0,6N mixed mononitride fuel tests in a BOR-60 reactor to burnup 12% h.a. Rogozkin B.D., Stepennova N.M., Fedorov Yu.E., Shishkov M.G., Kryukov F.N., Kuzmin S.V., Nikitin O.N., Belyaeva A.V., Zabudko L.M. Atomic Energy. 2011; 110(6): 412–29. https://doi.org/10.1007/s10512-011-9442-0

15. State of nitride fuel after irradiation in fast reactors. Kryukov F.N., Nikitin O.N., Kuzmin S.V., Belyaeva A.V., Maltseva E.B., Gilmutdinov I.F., Grin P.I. Atomic Energy. 2012; 112(6): 410–16. https://doi.org/10.1007/s10512-012-9576-8

16. Karelin V.A., Popadeikin M.V. Fluoride method for reprocessing uranium-plutonium nitride fuel of the BREST reactor. Bulletin of Tomsk Polytechnic University. 2005; 308(5): 85–90 (in Russian).

17. Volk V.I., Dvoeglazov K.N., Shlyazhko D.S., Kruglov S.N., Terentev S.G. Comparative analysis of crystallization affinage methods as applied to the hydrometallurgical technology for reprocessing the FBR spent nitric fuel Questions of atomic science and technology. Ser. Materials science and new materials. 2015; 4 (83): 91–5. (in Russian).

18. Shadrin A.Y., Ivanov V.B., Skupov M.V., Troyanov V.M., Zherebtsov A.A. Comparison of closed nuclear fuel cycle technologies. Atomic Energy. 2016; 121(2): 119–26. https://doi.org/10.1007/s10512-016-0171-2

19. Spiridonov S.I., Perevolotsky A.N., Alexakhin R.M., Spirin E.V., Vlaskin G.N. Radioecological substantiation of parameters of fission products and actinides recovery from spent nuclear fuel of reactor BREST-OD-300. Atomic Energy. 2016; 121(3): 165–9 (in Russian).

20. The involvement of minor actinides in a closed fuel cycle at the "PRORYV" project. Grachev A.F., Zabudko L.M., Zherebtsov A.A., Homyakov Yu.S., Shadrin A.Yu., Glushenkov A.E., Skupov M.V. Questions of atomic science and technology. Ser. Materials science and new materials. 2017; 4(91): 140–150. (in Russian).

21. Voskresenskaya Yu.A., Ustinov O.A., Yakunin S.A. Ruthenium trapping from the gas phase in the processing regeneration of spent nitride fuel of fast reactor. Atomic Energy. 2013; 115(3): 155–7. (in Russian).

22. Yakunin S.A., Ustinov O.A., Shadrin A.Y., Shudegova O.V. Purification of gaseous emissions by 14C removal during reprocessing of spent uranium-plutonium nuclear fuel. Atomic Energy. 2016; 120(3): 229–32. https://doi.org/10.1007/s10512-016-0122-y

23. Ustinov O.A., Dvoeglazov K.N., Tuchkova A.I., Shadrin A.Yu. Local off-gas cleaning system for spent nitride nuclear fuel voloxidation. Atomic Energy. 2017; 123(4): 203–5 (in Russian).

24. Babikov L.G., Raspopin S.P. Method and plant for recycling of spent nuclear fuel. Patent RU 2371792 C2, 27.10.2009 (in Russian).

25. Auger Frederic, Bertrand Murielle, Courtaud Bruno, Grandjean Stephane. Procede de preparation d'un oxalate d'actinide(s) et de preparation d'un compose d'actinide(s). Patent République Francaise FR 2940267 B1, 09.12.2011.

26. Baron Pascal, Dinh Binh, Masson Michel, Miguirditchian Manuel, Saudray Didier, Sorel Christian. Procede de traitement de combustibles nucleaires uses ne necessitant pas d'operation de desextraction reductrice du plutonium. Patent République Francaise FR 2960690 B1, 29.06.2012.

27. Aljapyshev M.Yu., Babain V.A., Blazheva I.V., Eliseev I.I., Logunov M.V., Murzin A.A., Fedorov Yu.S. Method of processing irradiated nuclear fuel. Patent RU 2540342 C2, 10.02.2015 (in Russian).

28. Khokhlov V.A., Potapov A.M., Shishkin V.Yu., Bove A.L., Zajkov Yu.P. Method of nitride spent nuclear fuel recycling in salt melts. Patent RU 2603844 C1, 10.12.2016 (in Russian).

29. Zajkov Yu.P., Shishkin V.Yu., Kovrov V.A., Potapov A.M., Suzdaltsev A.V., Golosov O.A., Glushkova N.V., Khvostov S.S. Method of processing fuel elements.

30. Patent RU 2707562 C1, 28.11.2019 (in Russian).

31. Zajkov Yu.P., Shishkin V.Yu., Karimov K.R., Shishkin A.V., Potapov A.M., Nikolaev A.Yu., Suzdaltsev A.V. Method of processing nitride nuclear fuel. Patent RU 2724117 C1, 22.06.2020 (in Russian).

32. Medical dosimetric register of personnel of the Siberian Chemical Plant — a base for assessing the effects of chronic radiation. Radiation biology. Radioecology. 2015; 55(5): 467–473. https://doi.org/10.7868/S0869803115050124 (in Russian).

33. Healthy employees biological material bank at the Siberian group of chemical enterprises. Extreme Medicine. 2013; 1(43): 30–39. eLIBRARY ID: 20256321

34. (in Russian).

35. Solomatin V.M., Aleksakhin R.M., Spirin E.V., Sorokin I.B., Zhivago A.I., Ryzhova L.I. Radioecological state of the agrosphere in the 30-km zone of the Siberian chemical combine during the pre-startup period of a prototype power complex. Atomic Energy. 2018. 124(1): 50–3. https://doi.org/10.1007/s10512-018-0373-x

36. Spirin E.V., Aleksakhin R.M., Bazhanov A.A. Structure of the public irradiation dose during operation of experimental-demonstration power complex enterprises. Atomic Energy. 2018; 124(3): 203–9. https://doi.org/10.1007/s10512-018-0398-1

37. Spiridonov S.I., Perevolotskii A.N., Perevolotskaya T.V., Aleksakhin R.M., Spirin E.V. Analysis of the human biohazard of long-lived fission products and actinides for BREST-OD-300 spent fuel. Atomic Energy. 2017; 123(2): 122–6. https://doi.org/10.1007/s10512-017-0312-2

38. Ustinov O.A., Kashcheev V.A., Shadrin A.Y., Tuchkova A.I., Semenov A.A., Lesina I.G., Anikin A.S. Tritium in nitride fuel of fast reactor. Atomic Energy. 2019; 125(4): 244–9. https://doi.org/10.1007/s10512-019-00474-9


Review

For citations:


Popchenko M.R., Tsovyanov A.G., Shinkarev S.M., Simakov A.V., Klochkov V.N., Korenkov I.P. Radiation-hygienic support of work with nitride fuel for fast reactors: problems, achievements and prospects. Initial position. Russian Journal of Occupational Health and Industrial Ecology. 2021;61(9):558-566. (In Russ.) https://doi.org/10.31089/1026-9428-2021-61-9-558-566

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)