Preview

Russian Journal of Occupational Health and Industrial Ecology

Advanced search

Physiological methods in the study of “passive” industrial exoskeletons of the back and lower extremities

https://doi.org/10.31089/1026-9428-2020-60-5-318-328

Abstract

A limited number of physiological methods are used in a sample of 566 studies related to the use of passive industrial exoskeletons of the back and lower extremities. Electromyography is used most often (~56%). In most cases, the meaning of using physiological methods is conceptually related to the assessment of reducing the load on the muscles, studying the parameters of motor activity in a person in an exoskeleton. The study of the gentral influences caused by the use of this type of device remains a little-used direction.

About the Authors

N. D. Babanov
P.K. Anokhin Research Institute of Normal Physiology
Russian Federation

Nikita D. Babanov

Moscow, Russian Federation, 125315

 



O. V. Kubryak
P.K. Anokhin Research Institute of Normal Physiology
Russian Federation

Oleg V. Kubryak - head of the laboratory of physiology of human functional states of Anokhin Research Institute of Normal Physiology, Dr. of Sci. (Biol.).

Moscow, Russian Federation, 125315


References

1. Schmalz, T., Schandlinger, J., Schuler, M., Bornmann, J., Schirrmeister, B., Kannenberg, A., & Ernst, M. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. International Journal of Environmental Research and Public Health. 2019; 16(23): 4792. DOI: 10.3390/ijerph16234792

2. Pismennaya, E.V., Petrushanskaya K.A., Kotov S.V., Ave-dikov G.E., Mitrofanov I.E., Tolstov K.M., Efarov VA. Clinical and biomechanical justification for the use of the exoskeleton “Exoatlet” when walking patients with the consequences of ischemic stroke. Russian Journal of Biomechanics/Rossijski Zurnal Biomehaniki. 2019; 23(2). DOI: 10.15593/RZhBiomeh/2019.2.04

3. Masood J., Dacal-Nieto A., Alonso-Ramos V., Fontano M. I., Voilque A., Bou J. Industrial Wearable Exoskeletons and Exosuits Assessment Process. Wearable Robotics: Challenges and Trends. 2018; 234-238. DOI: 10.1007/978-3-030-01887-0_45

4. Kim S., Moore A., Srinivasan D., Akanmu A., Barr A., Har-ris-Adamson C., Nussbaum M. A. Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. IISE Transactions on Occupational Ergonomics and Human Factors. 2019; 1-10. DOI: 10.1080/24725838.2018.1561557

5. Dudley, D. R., Knarr, B. A., Siu, K.-C., Peck, J., Ricks, B., & Zuniga, J. M. Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study. Disability and Rehabilitation: Assistive Technology. 2019: 1-5. DOI: 10.1080/17483107.2019.1646823

6. Ao, D., Song, R., & Gao, J. Movement Performance of Human — Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017; 25(8): 1125-1134. DOI: 10.1109/tnsre.2016.2583464

7. Ma Z., Ben-Tzvi P., Danoff J. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016; 24(12): 1323-32. DOI: 10.1109/tnsre.2015.2501748

8. Vega Ramirez A., Kurita Y. A Soft Exoskeleton Jacket with Pneumatic Gel Muscles for Human Motion Interaction. Universal Access in Human-Computer Interaction. Multimodality and Assistive Environments. HCII 2019. Lecture Notes in Computer Science, vol 11573. DOI: https://doi.org/10.1007/978-3-030-23563-5_46

9. Koopman A.S., Kingma I., Faber G.S., de Looze M.P., van Die6n J.H. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of biomechanics. 2019; 83: 97-103. DOI: 10.1016/j.jbiomech.2018.11.033

10. Masood J., Ortiz J., Fernandez J., Mateos L.A., Caldwell D.G. Mechanical design and analysis of light weight hip joint Parallel Elastic Actuator for industrial exoskeleton. Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2016; 6: 631-6.

11. Yu H., Choi I.S., Han K.-L., Choi J.Y., Chung G., Suh J. Development of a Stand-alone Powered Exoskeleton Robot Suit in Steel Manufacturing. ISIJInternational, 2015; 55(12), 2609-17. DOI: 10.2355/isijinternational.isijint-2015-272

12. von Glinski A, Yilmaz E, Mrotzek S, Marek E, Jettkant B, Brinkemper A, Fisahn C, Schildhauer TA, Gefimann J. Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. J Clin Neurosci. 2019; 63: 249-55. DOI: 10.1016/j.jocn.2019.01.038

13. Vorob’ev A.A., Andryushchenko F.A., Zasypkina O.A., Solov’eva I.O., Krivonozhkina P.S., Pozdnyakov A.M. Terminology and classification of exoskeletons. Vestnik Volgogradskogo gosu-darstvennogo meditsinskogo universiteta. 2015; 7 (2): 185-97 (in Russian).

14. Bos R.A., Haarman C.J., Stortelder T., Nizamis K., Herder J.L., Stienen A.H., Plettenburg D.H. A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Reha-bil. 2016; Jun 29;13(1): 62. DOI: 10.1186/s12984-016-0168-z

15. Jayaraman A., O’Brien M.K., Madhavan S., Mummidisetty C.K., Roth H.R., Hohl K., Tapp A., Brennan K., Kocherginsky M., Williams K.J., Takahashi H., Rymer W.Z. Stride management assist exoskeleton vs functional gait training in stroke: A randomized trial. Neurology. 2019 Jan 15; 92(3):e263-e273. DOI: 10.1212/WNL.0000000000006782

16. Husain S.R., Ramanujam A., Momeni K., Forrest G.F. Effects of Exoskeleton Training Intervention on Net Loading Force in Chronic Spinal Cord Injury. Conf Proc IEEE Eng Med Biol Soc. 2018; 7: 2793-6. DOI: 10.1109/EMBC.2018.8512768

17. Goh S.K., Abbass H.A., Tan K.C., Al-Mamun A., Thakor N., Bezerianos A., Li J. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification. IEEE Trans Neural Syst Rehabil Eng. 2018 Sep; 26(9):1858-1867. DOI: 10.1109/TNSRE.2018.2864119

18. Luu T.P., He Y., Brown S., Nakagame S., Contreras-Vi-dal J.L. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. J Neural Eng. 2016 Jun; 13(3): 036006. DOI: 10.1088/1741-2560/13/3/036006

19. Ho Chit Siu, Julie A. Shah, Leia A. Stirling. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography. Sensors (Basel). 2016 Nov; 16(11): 1782. DOI: 10.3390/s16111782.

20. Vorob’ev A.A., Andryushchenko F.A., Zasypkina O.A., Solov’eva I.O., Krivonozhkina P.S., Pozdnyakov A.M. Terminology and classification of exoskeletons. Vestnik Volgogradskogo gosu-darstvennogo meditsinskogo universiteta. 2015; 7 (2): 185-97 (in Russian).

21. Exoskeleton Report. Industnal.https://exoskeletonre-port.com/product-category/exoskeleton-catalog/industrial/.

22. D.A. Winter. Stiffness control of balance in quiet standing. J Neurophysiol. 1998; 80(3): 1211-21.

23. Song H., H. Park, S. Park A. springy pendulum could describe the swing leg kinetics of human walking. J Biomech. 2016; 49 9): 1504-1509. DOI: 10.1016/j.jbiomech.2016.03.018

24. Profeta VLS, Turvey MT. Bernstein’s levels of movement construction: A contemporary perspective. Hum Mov Sci. 2018 Feb;5 7:111-133. DOI: 10.1016/j.humov.2017.11.013

25. Bernshteyn N.A. On the construction of movements. Moskva: Meditsina; 1947 (in Russian).

26. Sudakov K.V Theory of Functional Systems: A Keystone of Integrative Biology. In: Nadin M. (eds) Anticipation: learning from the past. The Russian/Soviet Contributions to the Science of Anticipation. Springer, Cham Switzerland; 2015. ISBN: 978-3-319-194462. [DOI:10.1007/978-3-319-19446-2]

27. Anokhin P.K. Essays on the physiology of functional systems. Moskva: Meditsina; 1975 (in Russian).

28. Sberbank pomog sozdat’ ekzoskelet dlya khirurgov. http://sk.ru/news/b/press/archive/2019/03/12/sberbank-pomog-soz-dat-ekzoskelet-dlya-hirurgov.aspx

29. Vorkutaugol’ protestirovala opytnyy obrazets ekzoskeleta. https://neftegaz.ru/news/auto/484219-vorkutaugol-protestirova-la-opytnyy-obrazets-ekzoskeleta/.

30. Wearable posture assisting device Patent South Korea № KR20160048885A.

31. de Souza N.S., Martins A.C., Alexandra D.J., Orsini M., Bastos V.H., Laite M.A., Teixeira S., Velasques B., Ribeiro P., Bittencourt J., Matta A.P., Filho P.M. The influence of fear of falling on orthostatic postural control: a systematic review. Neurol Int. 2015; 7: 62-65.

32. Lim S.B., Cleworth T.W., Horslen B.C., Blouin J.S., Inglis J.T., Carpenter M.G. Postural threat influences vestibular-evoked muscular responses. J Neurophysiol. 2017 Feb 1; 117(2): 604-11. DOI: 10.1152/jn.00712.2016.

33. Chang S. R., Kobetic R., Triolo R.J. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia. PLOS ONE, 2017; 12(8): e0183125. DOI: 10.1371/journal.pone.0183125.

34. Bosch T., van Eck J., Knitel K., de Looze M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics. 2016; 54: 212-7. DOI: 10.1016/j.apergo.2015.12.003.

35. Vernooij C. A., Reynolds R. F., Lakie M. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement. Royal Society Open Science. 2016; 3(5). DOI: 10.1098/rsos.160065.

36. Altman D., Minozzo F.C., Rassier D.E. Thixotropy and Rheopexy of Muscle Fibers Probed Using Sinusoidal Oscillations. PLOS ONE. 2015; 10(4), e0121726. DOI: 10.1371/journal.pone.0121726.

37. DeBusk H., Babski-Reeves K., Chander H. Preliminary Analysis of StrongArm® Ergoskeleton on Knee and Hip Kinematics and User Comfort. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2017; 61(1): 1346-50. DOI: 10.1177/1541931213601820.

38. Shiozawa S., Hirata R.P., Graven-Nielsen T. Center of Pressure Displacement of Standing Posture during Rapid Movements is Reorganised Due to Experimental Lower Extremity Muscle Pain. PLoS One. 2015; 10(12): e0144933. DOI: 10.1371/journal.pone.0144933.

39. Huysamen K., Bosch T., de Looze M., Stadler K. S., Graf E., O’Sullivan L. W. Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics. 2018; 70: 148-55. DOI: 10.1016/j.apergo.2018.02.009.

40. Kim S., Nussbaum M.A., Mokhlespour Esfahani M.I., Alemi M.M., Alabdulkarim S., Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I — “Expected” effects on discomfort, shoulder muscle activity, and work task performance. Applied Ergonomics. 2018; 70: 315-322. DOI: 10.1016/j.apergo.2018.02.025.

41. Renner T. Exoskeleton with Lightweight Plastic Components Finds Applications in Medicine, Manufacturing, and Agriculture. Plastics Engineering. 2018; 74(3): 30-5. DOI: 10.1002/j.1941-9635.2018.tb01855.x.

42. Kim S., Nussbaum M.A., Mokhlespour Esfahani M.I., Alemi M. M., Jia B., Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II — “Unexpected” effects on shoulder motion, balance, and spine loading. Applied Ergonomics. 2018; 70: 323-330. DOI: 10.1016/j.apergo.2018.02.024.

43. Kubryak O.V, Bagdasar’yan N.G., Glazachev O.S. et al. Researcher and physician tools: boundaries of achievable results and impact on research findings. Based on materials from the round table at the Wayne Readings. 2018; 6: 365-85. DOI: 10.14515/monitoring.2018.6.17.


Review

For citations:


Babanov N.D., Kubryak O.V. Physiological methods in the study of “passive” industrial exoskeletons of the back and lower extremities. Russian Journal of Occupational Health and Industrial Ecology. 2020;(5):318-328. (In Russ.) https://doi.org/10.31089/1026-9428-2020-60-5-318-328

Views: 919


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)