Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors cоmbination
https://doi.org/10.31089/1026-9428-2018-11-10-16
Abstract
Random Amplification of Polymorphic DNA (RPD) analysis was a part of toxicological studies to determine DNA fragmentation coefficient (Kfr) after the exposure to nanoparticles of silver, gold, copper oxides, iron, aluminum, zinc, lead, nickel, silicon administered intraperitoneally or by inhalation.
Intraperitoneal administration occurred 3 times a week for 6 weeks and covered empirically selected sublethal doses to provide moderate intoxication. Inhalational expositions continued 4 hours a day 5 times a week for 3, 6 or 10 months. The statistically significant increase in nuclear DNA fragmentation was observed in all cases of exposure to nanoparticles. If subjected to a combination of bioprotectors varying in the action mode, genotoxicity of the silver, copper oxide and nickel oxide nanoparticles was significantly weaker.
About the Authors
Marina P. SutunkovaRussian Federation
30, Popova Str., Ekaterinburg, 620014
Oleg G. Makeyev
Russian Federation
3, Repina Str., Ekaterinburg, 620028
Larisa I. Privalova
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Il’zira A. Minigaliyeva
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Vladimir B. Gurvich
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Svetlana N. Solov’yova
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Svetlana V. Klinova
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Vadim O. Ruzakov
Russian Federation
30, Popova Str., Ekaterinburg, 620014
Artyom V. Korotkov
Russian Federation
3, Repina Str., Ekaterinburg, 620028
Evgeniy A. Shuman
Russian Federation
3, Repina Str., Ekaterinburg, 620028
Boris A. Katsnelson
Russian Federation
30, Popova Str., Ekaterinburg, 620014
References
1. Senapati V.A., Jain A.K., Gupta G.S., Pandey A.K., Dhawan A. Chromium oxide nanoparticle-induced genotoxicity and p53-dependent apoptosis in human lung alveolar cells. J. Appl. Toxicol. 2015; 35 (10): 1179–80. doi. org/10.1002/jat.3174
2. Kang S.J., Ryoo I.G., Lee Y.J., Kwak M.K. et al. Role of the Nrf2-heme oxygenase–1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol. Appl. Pharmacol. 2012; 258 (1): 89–98. doi: 10.1016/j.taap.2011.10.011.
3. Buffet P.E., Richard M., Caupos F., Vergnoux A., PerreinEtajani H., Luna-Acosta A., A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environmental science & technology. 2013; 47(3): 1620–1628. doi: 10.1021/es303513r.
4. Bayat N., Rajapakse K., Marinsek-Logar R., Drobne D., Cristobal S. The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae. Nanotoxicology. 2014; 8(4): 363–373.
5. Alarif S., Ali D., Verma A., Alakhtani S. et al. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. International journal of toxicology. 2013; 32(4): 296–307. DOI: 1091581813487563.
6. Bhattacharya K., Davoren M., Boertz J., Schins R .P., Hoffmann E., Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNAbreakage in human lung cells. Part. Fibre. Toxicol. 2009; 6: 17. DOI: 10.1186/1743–8977–6–17.
7. Gomaa I.O., Kader M.H., Salah T.A., Heikal O.A. Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug discoveries & Terapeutics. 2013; 7(3): 116–23.
8. Kain J., Karlsson H.L., Möller L. DNA damage induced by micro- and nanoparticles — interaction with FPG infl uences the detection of DNA oxidation in the comet assay. Mutagenesis. 2012; 27(4): 491–500.
9. Perreault F., Perreault F.., Pedroso M.S., Henning da Costa C., de Oliveira Franco Rossetto A.L et al. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Science of The Total Environment. 2012; 441: 117–24.
10. Freyria F.S., Bonelli B., Tomatis M., Ghiazza M., Gazzano E. et al. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells. Chem. Res. toxicol. 2012; 25(4): 850–61. DOI: 10.1021/tx2004294.
11. Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008; 21(9): 1726–32. DOI: 10.1021/tx800064j.
12. Karlsson H.L., Gustafsson J., Cronholm P., Möller L. Size-dependent toxicity of metal oxide particles — a comparison between nano- and micrometer size. Toxicol Let. 2009; 188 (2): 112–8. DOI: 10.1016/j. toxlet. 2009.03.014.
13. Balasubramanyam A., Sailaja N., Mahboob M., Rahman M.F., Hussain S. M. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis. 2009; 24 (3): 245–51. DOI: 10.1093/mutage/gep003
14. Singh S.P., Rahman M.F., Murty U.S., Mahboob M., Grover P. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology. 2013; 266(1): 56–66.
15. Tavares P., Balbinot F., Oliveira H.M., Fagundes, G.E., Venâncio M. Ronconi J. et al. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo. J. Nanoparticle Research. 2012; 14: 791.
16. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.G., Shur V.Ya., Bejkin Ya.B. et al. Comparative in Vivo Assessment of Some Adverse Bioeff ects of Equidimensional Gold and Silver Nanoparticles and the Atenuation of Nanosilver’s Effects with a Complex of Innocuous Bioprotectors. International Journal of Molecular Sciences. 2013; 14: 2449–83.
17. Minigaliyeva A.I., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B. et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bioprotectors. Toxicology. 2017; 380: 72–93.
18. Minigaliyeva A.I., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Ya. et al. Comparative and combined toxicity of aluminium, titanium and silicon oxides nanoparticles and its attenuation with bioprotectors combination. Toksikologicheskij vestnik. 2018; 2: 18–27. (in Russian).
19. Carcinogenic factors and general requirements to cancer prevention. SanPiN 1.2.2353–08. М., 2008. (in Russian).
20. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Ya., Makeyev O.G. et al. Increasing individual resistance to harmful effects of nanomaterials: the cases of silver and copper nanoparticles exposure. Gigiyena i san. 2015; 94 (2): 31–5 (in Russian).
21. Minigaliyeva A.I., Privalova L.I., Sutunkova M.P., Shur V.Ya., Valamina I.Ye., Makeyev O.G. et al. Nickel and manganese oxides nanoparticles combined subchronic toxicity and its attenuation with bioprotectors combination. Med. truda i prom. ekol. 2016; 10: 25–8 (in Russian).
Review
For citations:
Sutunkova M.P., Makeyev O.G., Privalova L.I., Minigaliyeva I.A., Gurvich V.B., Solov’yova S.N., Klinova S.V., Ruzakov V.O., Korotkov A.V., Shuman E.A., Katsnelson B.A. Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors cоmbination. Russian Journal of Occupational Health and Industrial Ecology. 2018;(11):10-16. (In Russ.) https://doi.org/10.31089/1026-9428-2018-11-10-16