Reproductive health of female workers under the influence of harmful industrial factors: the current state of the problem
https://doi.org/10.31089/1026-9428-2025-65-10-660-671
EDN: wdgobk
Abstract
Preserving the reproductive health of female workers is a priority task of occupational health and demographic policy. Modern (2000–2025) peer-reviewed publications from international (PubMed, MEDLINE, Scopus) and Russian (eLibrary, RSCI) scientific databases on the impact of occupational risks on the reproductive health of female workers are analyzed.
The authors selected original studies, systematic reviews, and meta-analyses containing quantitative risk assessments using strict inclusion/exclusion criteria. For the analysis, they used standardized epidemiological indicators: odds ratio (OR), relative risk (RR) and etiological proportion (EF). The review results demonstrate a statistically significant association between exposure to harmful occupational factors and reproductive function disorders, including pregnancy complications and decreased fertility.
The presented analysis convincingly shows that the problem of protecting the reproductive health of workers (especially women) is of social and demographic importance and emphasizes the need to move from simply identifying existing disorders to assessing and managing occupational risks.
Contributions:
Fesenko M.A. — research concept and design, data analysis and interpretation; approval of the final version;
Golovaneva G.V. — research concept and design, data analysis and interpretation, editing;
Gainullina M.K. — research concept and design, data analysis and interpretation, editing;
Miteleva T.Y. — collecting and processing material, writing text;
Vujtsik P.A. — collecting material, writing the text of the article section;
Utkina N.S. — collecting material, writing the text of the article section;
All authors — approving the final version of the article and for ensuring the integrity of all parts of the article.
Funding. The study had no funding.
Conflict of interest. The authors declare no conflict of interest.
Received: 06.10.2025 / Accepted: 20.10.2025 / Published: 21.11.2025
About the Authors
Marina A. FesenkoRussian Federation
Head of the Laboratory for the Prevention of Reproductive Health Disorders in Workers, Izmerov Research Institute of Occupational Health, Dr. of Sci. (Med.).
e-mail: fesenkoma@irioh.ru
Galina V. Golovaneva
Russian Federation
Leading Researcher, Laboratory for the Prevention of Reproductive Health Disorders in Workers, Izmerov Research Institute of Occupational Health, Dr. of Sci. (Med.).
e-mail: galstella@mail.ru
Makhmuza K. Gainullina
Russian Federation
Leading Researcher, Department of Occupational Medicine, Ufa Research Institute of Occupational Medicine and Human Ecology, Dr. of Sci. (Med.), Professor.
e-mail: gainullinamk@mail.ru
Tatyana Yu. Miteleva
Russian Federation
Senior Researcher, Laboratory for the Prevention of Reproductive Health Disorders in Workers, Izmerov Research Institute of Occupational Health, Cand. of Sci. (Med.).
e-mail: miteleva@irioh.ru
Petr A. Vuytsik
Russian Federation
Researcher, Laboratory for the Prevention of Reproductive Health Disorders in Workers, Izmerov Research Institute of Occupational Health.
e-mail: pv1985@mail.ru
Natalya S. Utkina
Russian Federation
Obstetrician-Gynecologist, Clinic of Occupational and Work-Related Diseases, Izmerov Research Institute of Occupational Health.
e-mail: tasha_2205@mail.ru
References
1. Decree of the President of the Russian Federation of May 7, 2024 № 309 "O nacional'nyh celjah razvitija Rossijskoj Federacii na period do 2030 goda i na perspektivu do 2036 goda". Official Internet portal of legal information: [electronic resource] http://publication.pravo.gov.ru (in Russian).
2. Decree of the President of the Russian Federation of June 6, 2019 No. 254 "On the Strategy for the Development of Healthcare in the Russian Federation for the period up to 2025". Official Internet portal of legal information: [electronic resource]. https://clck.ru/3Q4hyv (20.11.2024) (in Russian).
3. Buen M., Amaral E., Souza R.T., Passini R.Jr., Lajos G.J., Tedesco R.P. et al. Maternal work and spontaneous preterm birth: A multicenter observational study in Brazil. Sci. Rep. 2020; 10: 9684. https://doi.org/10.1038/s41598-020-66231-2
4. Izmerov N.F., Denisov E.I. Professional`ny`j risk: spravochnik. M.: Socizdat; 2001 (in Russian).
5. Arroyo V., Díaz J., Ortiz C., Carmona R., Saez M., Linares C. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain). Environ. Res. 2016; 145: 162–168. https://doi.org/10.1016/j.envres.2015.11.034
6. Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Molecular Reproduction and Development. 2019; 86(10): 1307–1323. https://doi.org/10.1002/mrd.23123
7. Rylander C., Odland J.O., Sandanger T.M. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations. Global Health Action. 2011; 4: 8452. https://doi.org/10.3402/gha.v4i0.8452
8. Hamid H.Y., Abu Bakar Zakaria M.Z., Yong Meng G. Yong Meng G., Haron A., Mohamed Mustapha N. Effects of elevated ambient temperature on reproductive outcomes and offspring growth depend on exposure time. The Scientific World Journal. 2012; 2012: 359134. https://doi.org/10.1100/2012/359134
9. Rekha S., Nalini S.J., Bhuvana S., Kanmani S., Vidhya V.A. A comprehensive review on hot ambient temperature and its impacts on adverse pregnancy outcomes. Journal of Mother and Child. 2023; 27(1): 10–20. https://doi.org/10.34763/jmotherandchild.20232701.d-22-00051
10. Kakkad K., Barzaga M.L., Wallenstein S., Azhar G.S., Sheffield P.E. Neonates in Ahmedabad, India, during the 2010 heat wave: A climate change adaptation study. J. Environ. Public Health. 2014: 946875. https://doi.org/10.1155/2014/946875
11. Wells J.C. Thermal environment and human birth weight. J. Theorl. Biol. 2002; 214(3): 413–25. https://doi.org/10.1006/jtbi.2001.2465
12. Kuehn L., McCormick S. Heat exposure and maternal health in the face of climate change. Int. J. Environ. Res. Public Health. 2017; 14(8): 853. https://doi.org/10.3390/ijerph14080853
13. Basu R., Sarovar V., Malig B.J. Association between high ambient temperature and risk of stillbirth in California. Am. J. Epidemiol. 2016, 15; 183(10): 894–901. https://doi.org/10.1093/aje/kwv295
14. Christen F., Desrosiers V., Dupont-Cyr B.A., Vandenberg G.W., Le François N.R., Tardif J.C. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: mitochondrial integrity and ROS production. Free Radical Biology and Medicine. 2018; 116: 11–18. https://doi.org/10.1016/j.freeradbiomed.2017.12.037
15. Hu Y., Luo N., Gan L., Xue H.Y., Luo K.Y., Zhang J.J., Wang X.Z. Heat stress upregulates arachidonic acid to trigger autophagy in sertoli cells via dysfunctional mitochondrial respiratory chain function. Journal of Translational Medicine. 2024; 22: 501. https://doi.org/10.1186/s12967-024-05182-y
16. Edwards M.J., Shiota K., Smith M.S., Walsh D.A. Hyperthermia and birth defects. Reproductive Toxicology. 1995; 9(5): 411–425. https://doi.org/10.1016/0890-6238(95)00043-A
17. Auger N., Fraser W.D., Sauve R. Bilodeau-Bertrand M, Kosatsky T. Risk of congenital heart defects after ambient heat exposure early in pregnancy. Environmental Health Perspectives. 2017; 125(1): 8–14. https://doi.org/10.1289/EHP171
18. Sultana Z., Maiti K., Aitken J. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. American Journal of Reproductive Immunology. 2017; 77(5): 12653. https://doi.org/10.1111/aji.12653
19. Koren G., Goh Y.I., Klieger C. Folic acid: the right dose. Canadian Family Physician. 2008; 54(11): 1545–1547. https://clck.ru/3Q4iZR
20. Edwards M.J. Hyperthermia in utero due to maternal influenza is an environmental risk factor for schizophrenia. Congenital Anomalies. 2007; 47(3): 84–89. https://doi.org/10.1111/j.1741-4520.2007.00151.x
21. Graham J.M. Jr., Marshall J. Edwards: discoverer of maternal hyperthermia as a human teratogen. Birth Defects Research Part A: Clinical and Molecular Teratology. 2005; 73(11): 857–864. https://doi.org/10.1002/bdra.20185
22. Brown A.S., Schaefer C.A., Wyatt R.J., Goetz R., Begg M.D., Gorman J.M., Susser E.S. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophrenia Bulletin. 2000; 26(2): 287-295. https://doi.org/10.1093/oxfordjournals.schbul.a033453
23. Edwards M.J., Saunders R.D., Shiota K. Effects of heat on embryos and fetuses. International Journal of Hyperthermia. 2003; 19(3): 295–324. https://doi.org/10.1080/02656736.2018.1458998
24. Maughan R. Impact of mild dehydration on wellness and on exercise performance. European Journal of Clinical Nutrition. 2003; 57(2): S19–S23. https://doi.org/10.1038/sj.ejcn.1601897
25. Grisso J.A., Main D.M., Chiu G., Synder E.S., Holmes J.H. Effects of physical activity and life-style factors on uterine contraction frequency. American Journal of Perinatology. 1992; 9(5-6): 489–492. https://doi.org/10.1055/s-2007-999295
26. Banerjee B. Physical hazards in employment and pregnancy outcome. Indian Journal of Community Medicine. 2009; 34(2): 89–93. https://doi.org/10.4103/0970-0218.51224
27. Shashar S., Kloog I., Erez O., Shtein A., Yitshak-Sade M., Sarov B. et al. Temperature and preeclampsia: epidemiological evidence that perturbation in maternal heat homeostasis affects pregnancy outcome. PLoS One. 2020; 15(5): 0232877. https://doi.org/10.1371/journal.pone.0232877
28. Duncan K. Global climate change, air pollution, and women's health. WIT Transactions on Ecol. Environ. 2006; 99: 633–643. https://doi.org/10.2495/RAV060611
29. Borisova D.S., Chashchin V.P., Nikanov A.N., Petruhin N.N., Kovshov A.A. Pregnancy course and outcomes in women working in cold climate regions. Gigiena i Sanitariya. 2023; 102(8): 775–782. https://doi.org/10.47470/0016-9900-2023-102-8-775-782 (in Russian).
30. Babanov S.A., Strizhakov L.A., Agarkova I.A., Tezikov Yu.V., Lipatov I.S. Workplace factors and reproductive health: causation and occupational risks assessment. Ginekologiya. 2019; 21(4): 33–43. https://doi.org/10.26442/20795696.2019.1.190227 (in Russian).
31. Dubeykovskaya L.S., Salangma L.J., Sladkova Yu.N., Smirnov V.V., Kiryanova M.N., Frolova N.M. Occupational risk of reproductive disorders in individuals exposed to vibration and noise at work (review of literature). Russian Journal of Occupational Health and Industrial Ecology. 2004; (12): 23–7. https://elibrary.ru/owbjwb (in Russian).
32. Park J., Stanford J.B., Porucznik C.A., Christensen K., Schliep K.C. Daily perceived stress and time to pregnancy: a prospective cohort study of women trying to conceive. Psychoneuroendocrinology. 2019; 110: 104446. https://doi.org/10.1016/j.psyneuen.2019.104446
33. Dzhambov A.M., Dimitrova D.D., Dimitrakova E.D. Noise exposure during pregnancy, birth outcomes and fetal development: meta-analyses using quality effects model. Folia Med. (Plovdiv). 2014; 56(3): 204–14. https://doi.org/10.2478/folmed-2014-0030
34. Selander J., Albin M., Rosenhall U. Rylander L, Lewné M., Gustavsson P. Maternal occupational exposure to noise during pregnancy and hearing dysfunction in children: a nationwide prospective cohort study in Sweden. Environmental Health Perspectives. 2016; 124: 855–860. https://doi.org/10.1289/ehp.1509874
35. International Labour Organization. Exposure to hazardous chemicals at work and resulting health impacts: a global review. Geneva: ILO; 2021. https://clck.ru/3Q4irh
36. Lin J., Lin X., Qiu J., You X., Xu J. Association between heavy metals exposure and infertility among American women aged 20-44 years: a cross-sectional analysis from 2013 to 2018 NHANES data. Frontiers in Public Health. 2023; 11: 1122183. https://doi.org/10.3389/fpubh.2023.1122183
37. Rodriguez-Villamizar L.A., Jaimes D.C., Manquiбn-Tejos A., Sбnchez L.H. Human mercury exposure and irregular menstrual cycles in relation to artisanal gold mining in Colombia. Biomedica. 2015; 35: 38–45. https://clck.ru/3Q4iui
38. Petrova M.V., Ourgaud M., Boavida J.R.H., Dufour A., Tesan Onrubia J.A., Lozingot A. et al. Human mercury exposure levels and fish consumption at the French Riviera. Chemosphere. 2020; 258: 127232. https://doi.org/10.1016/j.chemosphere.2020.127232
39. El-Badry A., Rezk M., El-Sayed H. Mercury-induced oxidative stress may adversely affect pregnancy outcome among dental staff: a cohort study. International Journal of Occupational and Environmental Medicine. 2018; 9(2): 113–119. https://clck.ru/3Q4ixj
40. Remy L.L., Byers V., Clay T. Reproductive outcomes after non-occupational exposure to hexavalent chromium, Willits California, 1983-2014. Environmental Health. 2017; 16: 18. https://doi.org/10.1186/s12940-017-0222-8
41. Gainullina M.K., Shaikhlislamova E.R., Karimova L.K., Teregulov B.F., Karimova F.F. Protection of workers' reproductive health as a factor contributing to demographic improvement. Occupational Medicine and Human Ecology. 2021; 25(1): 61–72. https://doi.org/10.24412/2411-3794-2021-10106 https://elibrary.ru/piyhyf (in Russian).
42. Gainullina M.K., Shaikhlislamova E.R., Karimova L.K., Yakupova A.Kh., Karamova L.M., Karimova F.F. Reproductive health risks for female workers exposed to hazardous working conditions and measures to minimize them. Gigiena i sanitariya. 2019; 98(9): 990–996. https://elibrary.ru/oscufx (in Russian).
43. Ekpenyong C.E., Davies K., Daniel N. Effects of gasoline inhalation on menstrual characteristics and the hormonal profile of female petrol pump workers. Journal of Environmental Protection. 2013; 4: 65–73.
44. Sieja K., Von Mach-Szczypiński J. Health effect of chronic exposure to carbon disulfide (CS2) on women employed in viscose industry. Medycyna Pracy. 2018; 69(3): 329–335. https://doi.org/10.13075/mp.5893.00600
45. Fucic A., Duca R.C., Galea K.S., Maric T., Garcia K., Bloom M.S. et al. Reproductive health risks associated with occupational and environmental exposure to pesticides. International Journal of Environmental Research and Public Health. 2021; 18(12): 6576. https://doi.org/10.3390/ijerph18126576
46. Jurewicz J., Radwan M., Wielgomas B., Karwacka A., Klimowska A., Kałuzny P. et al. Parameters of ovarian reserve in relation to urinary concentrations of parabens. Environmental Health. 2020; 19: 1–8. https://doi.org/10.1186/s12940-020-00612-y
47. Sharma R.K., Singh P., Setia A., Sharma A.K. Insecticides and ovarian functions. Environmental and Molecular Mutagenesis. 2020; 61(4): 369–392. https://doi.org/10.1002/em.22348
48. Mathiesen L., Mørck T.A., Poulsen M.S., Nielsen J.K.S., Mose T., Long M. et al. Placental transfer of pesticides studied in human placental perfusion. Basic & Clinical Pharmacology & Toxicology. 2020; 127(6): 505–515. https://doi.org/10.1111/bcpt.13483
49. Qin K., Zhang Y., Wang Y., Shi R., Pan R.; Yao Q. et al. Prenatal organophosphate pesticide exposure and reproductive hormones in cord blood in Shandong, China. International Journal of Hygiene and Environmental Health. 2020; 225: 113479. https://doi.org/10.1016/j.ijheh.2020.113479
50. Hassan S., Thacharodi A., Priya A., Meenatchi R., Hegde T.A., Nguyen H.T., Pugazhendhi A. Endocrine disruptors: unravelling the link between chemical exposure and women's reproductive health. Environmental Research. 2024; 241: 117385. https://doi.org/10.1016/j.envres.2023.117385
51. Karwacka A., Zamkowska D., Radwan M., Jurewicz J. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Human Fertility. 2019; 22(1): 2–25. https://doi.org/10.1080/14647273.2017.1358828
52. Tricotteaux-Zarqaoui S., Lahimer M., Abou Diwan M., Corona A., Candela P., Cabry R. et al. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Frontiers in Public Health. 2024; 12: 1466967. https://doi.org/10.3389/fpubh.2024.1466967
53. Vessa B., Perlman B.E., McGovern P.G., Morelli S.S. Endocrine disruptors and female fertility: a review of pesticide and plasticizer effects. F&S Reports. 2022; 3(2): 85–94. https://doi.org/10.1016/j.xfre.2022.04.003
54. Gore A.C., Chappell V.A., Fenton S.E. et al. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews. 2015; 36(6): E1–E150. https://doi.org/10.1210/er.2015-1010
55. Olatunji O.S. Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Sci. Rep. 2019; 24; 9(1): 538. https://doi.org/10.1038/s41598-018-36996-8
56. Marconetto A., Babini A., Nanez M., Moreno L., Rosato O., Fux Otta C. Principales disruptores endocrinos vinculados con salud reproductiva femenina: bases biológicas de su asociación. Main endocrine disruptors related to female reproductive health: biological basis of their association. Medicina (B Aires). 2022; 82(3): 428–438. https://clck.ru/3Q5CcW
57. Kumar S., Sharma A., Kshetrimayum C. Environmental & occupational exposure & female reproductive dysfunction. Indian J. Med. Res. 2019; 150(6): 532–545.
58. Lindbohm M., Sallmén M. Reproductive Effects Caused by Chemical and Biological Agents. Finnish Institute of Occupational Health: Helsinki, Finland, 2017. https://clck.ru/3Q5Cjs
59. Yanbuxtina G.A., Safin V.F., Xusnarizanova R.F., Masyagutova L.M. The influence of biological factors on the body of female workers employed in the agro-industrial complex. Sovremenny`e texnologii obespecheniya biologicheskoj bezopasnosti: sbornik nauchno-prakticheskoj shkoly` konferencii molody`x ucheny`x i specialistov NIO Rospotrebnadzora – 2010. p. Obolensk, Moskovskaya obl. 2010: 43–46.
60. Masyagutova L.M., Gajnullina M.K., Rafikova L.M., Volgareva A.D., Gizzatullina L.G., Safin V.F. et al. Features of the formation of microbial ecology in the body of female workers in a livestock complex. Gigiena, profpatologiya i riski zdorov`yu naseleniya: materialy` Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodny`m uchastiem. 2016. Ufa. 2016: 484–489. https://elibrary.ru/xalogf
61. Gajnullina M.K., Gizatullina L.G., Safin V.F. Aspects of microbiocenosis of the urogenital tract of female animal husbandry workers. Mezhdunarodny`j nauchno-issledovatel`skij zhurnal. 2021; 8/2 (11): 96–100. https://elibrary.ru/fhnkdb
62. Panova I.V., Zemlyakova S.S., Gorblyansky Yu.Yu., Shitova N.V., Zaxarchenko O.P. On assessing the risk of occupational COVID-19 infection of medical workers. 2023. 11. Russian Journal of Occupational Health and Industrial Ecology. 2023; 63(11): 730–734. https://doi.org/10.31089/1026-9428-2023-63-11-730-734 https://elibrary.ru/spwrgb (in Russian).
63. Jeong K.S., Kim S., Kim W.J., Kim H.C., Bae J., Hong Y.C. et al. Cohort profile: Beyond birth cohort study – the Korean Children’s Environmental health Study (Ko-CHENS). Environ Res. 2019; 172: 358–366. https://doi.org/10.1016/j.envres.2018.12.009
64. Adinma J.I., Adinma E.D., Umeononihu O.S. Oguaka V., Adinma-Obiajulu N.D., Oyedum S.O. Prevalence, perception and risk factors for musculoskeletal discomfort among pregnant women in Southeast Nigeria. J. Musculoskelet Disord. Treat. 2018; 4: 63. https://doi.org/10.23937/2572-3243.1510063
65. Fesenko M.A., Golovaneva G.V., Miteleva T.Yu., Miskevich A.V. Assessment of the relationship between the severity of the labor process and complications of pregnancy in female workers, the health of the fetus and newborn. Russian Journal of Occupational Health and Industrial Ecology. 2022; 62(7): 466–474. https://doi.org/10.31089/1026-9428-2022-62-7-466-474 https://elibrary.ru/tvknsp (in Russian).
66. Croteau A. Occupational lifting and adverse pregnancy outcome: a systematic review and meta-analysis. Occup. Environ. Med. 2020; 77(7): 496–505. https://doi.org/10.1136/oemed-2019-106334
67. Lee W., Jung S.W., Lim Y.M., Lee K.J., Lee J.H. Spontaneous and repeat spontaneous abortion risk in relation to occupational characteristics among working Korean women: A crosssectional analysis of nationally representative data from Korea. BMC Public Health. 2019; 19: 1339. https://doi.org/10.1186/s12889-019-7728-7
68. McKinnon C.J., Hatch E.E., Orta O.R., Rothman K.J., Eisenberg M.L., Wefes-Potter J., Wise L.A. The association between work hours, shift work, and job latitude with fecundability: a preconception cohort study. Journal of Occupational Health Psychology. 2022; 27(2): 258–270. https://doi.org/10.1037/ocp0000279
69. Cai C., Vandermeer B., Khurana R., Nerenberg K., Featherstone R., Sebastianski M., Davenport M.H. The impact of occupational shift work and working hours during pregnancy on health outcomes: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019; 221(6): 563–576. https://doi.org/10.1016/j.ajog.2019.06.051
70. Suzumori N., Ebara T., Matsuki T., Yamada Y., Kato S., Omori T. et al. Effects of long working hours and shift work during pregnancy on obstetric and perinatal outcomes: a large prospective cohort study — Japan Environment and Children’s Study. Birth. 2020; 47(1): 67–79. https://doi.org/10.1111/birt.12463
71. Lee S.J, Kim C., Lee E.J., Lim M.N., Na S., Kim W.J. Ko-CHENS Study Group. Associations of night shift status during pregnancy with small for gestational age and preterm births. Journal of Korean Medical Science. 2024; 39(1): 25. https://doi.org/10.3346/jkms.2024.39.e25
72. Kader M., Bigert C., Andersson T. Selander J., Bodin T., Skröder H. et al. Shift and night work during pregnancy and preterm birth-a cohort study of Swedish health care employees. Int. J. Epidemiol. 2022; 50(6): 1864–1874. https://doi.org/10.1093/ije/dyab135
73. van Beukering M.D.M, van Melick M.J.G.J., Duijnhoven R.G. Schuit E., Liem S.L., Frings-Dresen M.H.W. et al. Working conditions in women with multiple pregnancy-the impact on preterm birth and adherence to guidelines: a prospective cohort study. Am. J. Obstet. Gynecol. 2023; 228(6): 734. https://doi.org/10.1016/j.ajog.2022.11.1281
74. Dehkordi S.M., Khoshakhlagh A.H., Yazdanirad S., Mohammadian-Hafshejani A., Rajabi-Vardanjani H. The effect of job stress on fertility, its intention, and infertility treatment among the workers: a systematic review. BMC Public Health. 2025; 25(1): 542. https://doi.org/10.1186/s12889-025-21790-9
75. Zhou Z., Li Y., Ding J., Sun S., Cheng W., Yu J. et al. Chronic unpredictable stress induces anxiety-like behavior and oxidative stress, leading to diminished ovarian reserve. Sci. Rep. 2024; 14(1): 30681. https://doi.org/10.1038/s41598-024-76717-y
76. Hu Y., Wang W., Ma W., Wang W., Ren W., Wang S. et al. Impact of psychological stress on ovarian function: Insights, mechanisms and intervention strategies (Review). Int. J. Mol. Med. 2025; 55(2): 34. https://doi.org/10.3892/ijmm.2024.5475
77. Sasaki N., Watanabe K., Egawa M., Ito Y., Kanamori Y., Tsuji R. et al. Job Stress, Psychological Distress, and Menstruation-Related Symptoms in Female Workers: A Cross-Sectional Study. BJOG. 2025; 132(10): 1438–1451. https://doi.org/10.1111/1471-0528.18153
78. Admas W.T., Teoh A.N., Chonu K. The effects of prenatal psychosocial work stress on adverse pregnancy outcomes: A comprehensive systematic review and meta-analysis. Scandinavian Journal of Work, Environment & Health. 2025: 4236. https://doi.org/10.5271/sjweh.4236
79. Kehler A., Jahnke S.A., Haddock C.K., Carlos Poston W.S., Jitnarin N., Heinrich K.M. Reproductive Health Concerns Among Female Firefighters. Int. Fire Serv. J. Leadersh. Manag. 2018; 12: 15-29. https://clck.ru/3Q5E8B
80. Kehler A., Jahnke S., Kukić F., Streetman A.E., Heinrich K.M. Prevalence of Reproductive Health Issues among US Female Law Enforcement Officers. Healthcare (Basel). 2023; 11(19): 2647. https://doi.org/10.3390/healthcare11192647
81. Blencowe H., Cousens S., Oestergaard M.Z., D., Moller A.B., Narwal R. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012; 379(9832): 2162-72. https://doi.org/10.1016/S0140-6736(12)60820-4
82. Nybo Andersen A.M., Wohlfahrt J., Christens P., Olsen J., Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000; 24; 320(7251): 1708–12. https://doi.org/10.1136/bmj.320.7251.1708
83. Biganeh J., Ashtarinezhad A., Behzadipour D., Khanjani N., Tavakoli N.A., Bagheri Hosseinabadi M. Investigating the relationship between job stress, workload and oxidative stress in nurses. Int. J. Occup. Saf. Ergon. 2022; 28(2): 1176–1182. https://doi.org/10.1080/10803548.2021.1877456
84. Kaltsas A., Zikopoulos A., Moustakli E., Zachariou A., Tsirka G., Tsiampali C. et al. The Silent Threat to Women's Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants (Basel). 2023; 26; 12(8): 1490. https://doi.org/10.3390/antiox12081490
Review
For citations:
Fesenko M.A., Golovaneva G.V., Gainullina M.K., Miteleva T.Yu., Vuytsik P.A., Utkina N.S. Reproductive health of female workers under the influence of harmful industrial factors: the current state of the problem. Russian Journal of Occupational Health and Industrial Ecology. 2025;65(10):660-671. (In Russ.) https://doi.org/10.31089/1026-9428-2025-65-10-660-671. EDN: wdgobk






































