Use of body adaptation to different oxygen levels in the prevention of occupational lung pathology
https://doi.org/10.31089/1026-9428-2025-65-9-587-595
EDN: blpmsh
Abstract
The population of resource–producing regions is exposed to a complex complex environmental impact — the combined effects of adverse factors of industrial and non-industrial origin. In coal mining and metallurgical areas, pathology of the bronchopulmonary system is especially common, which primarily reacts subtly to hypoxia in conditions of atmospheric air pollution. It is known that hypoxia underlies the pathogenesis of many occupational diseases, and is often a triggering factor in the development of the pathological process and, as a result, disorders of the energy balance in tissues. In this case, the pathways of intracellular signaling are disrupted, including the redox signaling system, whose action is mediated by the activation of free radical processes and changes in the level of protective proteins in cells. The physiological state and stability of these systems determine the adaptive capabilities of an organism in conditions of environmental disadvantage. In this regard, it is important to search for methods of treatment and prevention of occupational diseases based on the modulation of the redox signaling system. Such methods include interval normobaric hypoxic training, which is based on adaptation, in fact, to hypoxia, as well as to periods of reoxygenation at the time of returning to breathing air with a normal oxygen content. In this review, the authors have systematized studies on the use of adaptation of the human body to different oxygen levels in the prevention of occupational diseases of the bronchopulmonary system.
For this purpose, a search was conducted for literary sources on the following databases: PubMed, Google Scholar, eLibrary, ResearchGate, Web of Science, Scopus and CyberLeninka. The authors used specific keywords and phrases: occupational diseases, pathology of the bronchopulmonary system, prevention of interval normobaric hypoxic and hyperoxic training, redox signaling system, antihypoxic and antioxidant protective proteins. The experimental and clinical data presented in the review on the body's adaptation to different oxygen levels indicate that interval hypoxic and hyperoxic training can be an effective method of preventing occupational lung pathology with significant therapeutic potential for clinical practice in occupational health.
Contributions:
Zhukova A.G. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Kizichenko N.V. — collection, analysis and interpretation of data (literary sources);
Bugaeva M.S. — collection, analysis and interpretation of data (literary sources);
Mikhailova N.N. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Filimonov E.S. — collection, analysis and interpretation of data (literary sources);
Sazontova T.G. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text.
Funding. The study had no funding.
Conflict of interest. The authors declare no conflict of interest.
Received: 09.07.2025 / Accepted: 22.09.2025 / Published: 30.10.2025
About the Authors
Anna G. ZhukovaRussian Federation
Head of the Molecular-Genetic and Experimental Study Laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases; Head of the Natural Sciences Sub-Department, Kuzbass Humanitarian and Pedagogical Institute of the Kemerovo State University, Dr. of Sci. (Biol.), Docent
e-mail: nyura_g@mail.ru
Natalya V. Kizichenko
Russian Federation
Senior Researcher of the Molecular-Genetic and Experimental Study Laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Cand. of Sci. (Biol.)
e-mail: natakiz8@mail.ru
Maria S. Bugaeva
Russian Federation
Senior Researcher of the Molecular-Genetic and Experimental Study Laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Cand. of Sci. (Biol.)
e-mail: bugms14@mail.ru
Nadezhda N. Mikhailova
Russian Federation
Chief Researcher of the Scientific-Organizational and Educational Department, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Dr. of Sci. (Biol.), Professor
e-mail: napmih@mail.ru
Egor S. Filimonov
Russian Federation
Deputy Director on Science, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Cand. of Sci. (Med.)
e-mail: filimonov_es@nii-kpg.ru
Tatyana G. Sazontova
Russian Federation
Leading Researcher at the Translational Medicine Research Laboratory, Lomonosov Moscow State University, Faculty of Fundamental Medicine, Dr. of Sci. (Biol.), Professor
e-mail: yva1950@gmail.com
References
1. Popova A.Yu. Working conditions and occupational morbidity in the Russian Federation. Meditsina truda i ekologiya cheloveka. 2015; 3: 7–13. https://elibrary.ru/uwajyj (in Russian).
2. Vadulina N.V., Gallyamov M.A., Devyatova S.M. Occupational morbidity in Russia: problems and solutions. Bezopasnost' tehnogennyh i prirodnyh sistem. 2020; 3: 7–15. https://doi.org/10.23947/2541-9129-2020-3-7-15 https://elibrary.ru/rhguim (in Russian).
3. Xinliang Z., Achkasov E.E., Gavrikov L.K., Yuchen L., Zhang C., Dudnik E.N., et al. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed. Pharmacother. 2024; 178: 117275. https://doi.org/10.1016/j.biopha.2024.117275
4. Beygel E.A., Katamanova E.V., Shayakhmetov S.F., Ushakova O.V., Pavlenko N.A., Kuks A.N. et al. The impact of the long-term exposure of industrial aerosols on clinical and functional indices of the broncho-pulmonary system in aluminum smelter workers. Gigiena i sanitariya. 2016; 95(12): 1160–3. https://doi.org/10.18821/0016-9900-2016-95-12-1160-1163 https://elibrary.ru/xqrzqr (in Russian).
5. Yadykina T.K., Mikhaylova N.N., Panev N.I., Korotenko O.Yu., Zhukova A.G., Semenova E.A. Clinical and genetic features of the formation of concomitant visceral pathology in workers with industrial fluorosis. Meditsina truda i promyshlennaya ekologiya. 2020; 60(3): 144–50. https://doi.org/10.31089/1026-9428-2020-3-144-150 https://elibrary.ru/cnfcrt (in Russian).
6. Beygel E.A., Katamanova E.V., Kazakova P.V., Shayakhmetov S.F. Assessment of the quality of life related to the health of workers in the aluminium industry with broncholuminal diseases. Gigiena i sanitariya. 2021; 100(12): 1412–6. https://doi.org/10.47470/0016-9900-2021-100-12-1412-1416 https://elibrary.ru/vlqjel (in Russian)
7. Bukhtiyarov I.V., Kuzmina L.P., Golovkova N.P., Chebotarev A.G., Leskina L.M., Khelkovsky-Sergeev N.S., et al. Justification of the platform of Standards based on the risk's assessment to health employees disorders of the leading sector’s enterprises of the economy. Meditsina truda i promyshlennaya ekologiya. 2021; 61(3): 155–60. https://doi.org/10.31089/1026-9428-2021-61-3-155-160 https://elibrary.ru/jzggrs (in Russian).
8. Zhang Q., Zhao W., Li S., Ding Y., Wang Y., Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int. J. Med. Sci. 2023; 20(12): 1551–61. https://doi.org/10.7150/ijms.86622
9. Velichkovsky B.T. Pathogenetic classification of occupational respiratory diseases caused by exposure to fibrogenic dust. Pulmonologiya. 2008; 4: 93–101. https://doi.org/10.18093/0869-0189-2008-0-4-93-101 https://elibrary.ru/juydpd (in Russian).
10. Bondarev O.I., Bugaeva M.S., Gerus A.Yu., Kizichenko N.V. Morphological risk predictors for miners’ health in the context of clinical studies. Gigiena i sanitariya. 2024; 103(7): 663–70. https://doi.org/10.47470/0016-9900-2024-103-7-663-670 https://elibrary.ru/nismjq (in Russian).
11. Shpagina L.A., Zenkova M.A., Saprykin A.I., Logashenko E.B., Shpagin I.S., Kotova O.S. et al. The role of nanoparticles of industrial aerosols in the formation of occupational bronchopulmonary pathology. Med. truda i prom. ekol. 2024; 64(2): 111–20. https://doi.org/10.31089/1026-9428-2024-64-2-111-120 https://elibrary.ru/dbxtzj (in Russian).
12. Filimonov E.S., Korotenko O.Yu., Ulanova E.V. The role of abdominal obesity in the development of cardiopulmonary disorders in aluminum industry workers. Gigiena i sanitariya. 2023; 102(4): 328–32. https://doi.org/10.47470/0016-9900-2023-102-4-328-332 https://elibrary.ru/xiqpvi (in Russian).
13. Zhukova A.G., Alekhina D.A., Sazontova T.G., Prokop’ev. Yu.A., Gorokhova L.G., Stryapko N.V. et al. Mechanisms of intracellular defense and activity of free radical oxidation in rat myocardium in the dynamics of chronic fluorine intoxication. Bull. Exp. Biol. Med. 2013; 156(2): 224–7. https://doi.org/10.1007/s10517-013-2316-9
14. Zakharenkov V.V., Mikhailova N.N., Zhdanova N.N., Gorokhova L.G., Zhukova A.G. Experimental study of the mechanisms of intracellular defense in cardiomyocytes associated with stages of anthracosilicosis development. Bull. Exp. Biol. Med. 2015; 159 (4): 431–4. https://doi.org/10.1007/s10517-015-2983-9
15. Zhukova A.G., Gorokhova L.G., Kiseleva A.V., Sazontova T.G., Mikhailova N.N. Experimental study of the impact of low fluorine concentrations on the tissue level of HSP family proteins. Gigiena i sanitariya. 2018; 97(7): 604–8. https://elibrary.ru/uxaeuw (in Russian).
16. Zhukova A.G., Mikhailova N.N., Sazontova T.G., Zhdanova N.N., Kazitskaya A.S., Bugaeva M.S., et al. Participation of free-radical processes in structural and metabolic disturbances in the lung tissues caused by exposure to coal-rock dust exposure and their adaptogenic correction. Bull. Exp. Biol. Med. 2020; 168(4): 439–43. https://doi.org/10.1007/s10517-020-04727-7
17. Cui X., Xing J., Liu Y., Zhou Y., Luo X., Zhang Z. et al. COPD and levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes among coal workers: a case-control study. Cell. Stress Chaperones. 2015; 20(3): 473–81. https://doi.org/10.1007/s12192-015-0572-5
18. Zhou J., Sun D., Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol. Trace Elem. Res. 2023; 201(4): 1627–38. https://doi.org/10.1007/s12011-022-03302-7
19. Dumpala S., Ramaneswari K., Chintada V. Fluoride Toxicity and Potential Health Risks. In: Sharma K., ed. Fluorides in Drinking Water. Source, Issue, and Mitigation Strategies. Cham: Springer; 2025: 63–86. https://doi.org/10.1007/978-3-031-77247-4_3
20. Jiang X., Wang M., Li H., Liu Y., Dong X. Identification of Oxidative Stress-Associated Biomarkers in Chronic Obstructive Pulmonary Disease: An Integrated Bioinformatics Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2025; 20: 841–55. https://doi.org/10.2147/copd.s485505
21. Sazontova T.G., Glazachev O.S., Bolotova A.V., Dudnik E.N., Stryapko N.V., Bedareva I.V. et al. Adaptation to hypoxia and hyperoxia improves physical endurance: the role of reactive oxygen species and redox-signaling (Experimental and Applied Study). Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2012; 98(6): 793–807. https://elibrary.ru/nnaoga (in Russian).
22. Rybnikova E.A., Nalivaeva N.N., Zenko M.Y., Baranova K.A. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci. 2022; 16: 941740. https://doi.org/10.3389/fnins.2022.941740
23. Sazontova T.G., Arkhipenko Y.V. Intermittent hypoxia in resistance of cardiac membrane structures: Role of reactive oxygen species and redox signaling. In: Xi L., Serebrovskaya T.V., eds. Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications. New York: Nova Science Publishers; 2011: 113–50. https://elibrary.ru/skvxwf
24. Meerson F.Z., Ustinova E.E., Manukhina E.B. Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotropic effect. Biomed. Biochim. Acta. 1989; 48(2–3): S83–8. https://elibrary.ru/xoqidk
25. Meerson F.Z., Pshennikova M.G., Malyshev I.Yu. Adaptive defense of the organism. Architecture of the structural trace and cross protective effects of adaptation. Ann. N Y Acad. Sci. 1996; 793: 371–85. https://doi.org/10.1111/j.1749-6632.1996.tb33529.x
26. Sarieva K.V., Lyanguzov A.Yu., Galkina O.V., Vetrovoy O.V. Effects of Severe Hypoxia on HIF1- and NRF2-Mediated Mechanisms of Antioxidant Protection in the Rat Neocortex. Neyrokhimiya. 2019; 36(2): 128–39. https://doi.org/10.1134/S1027813319020109 https://elibrary.ru/zbjptf (in Russian).
27. Potteti H.R., Noone P.M., Tamatam C.R., Ankireddy A., Noel S., Rabb H. et al. Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells. Am. J. Physiol. Renal. Physiol. 2021; 320(3): F464–74. https://doi.org/10.1152/ajprenal.00501.2020
28. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148(3): 399–408. https://doi.org/10.1016/j.cell.2012.01.021
29. Schofield C.J., Ratcliffe P.J. Signalling hypoxia by HIF hydroxylases. Biochem. Biophys. Res. Commun. 2005; 338(1): 617–26. https://doi.org/10.1016/j.bbrc.2005.08.111
30. Koh M.Y., Powis G. Passing the baton: the HIF switch. Trends Biochem. Sci. 2012; 37(9): 364–72. https://doi.org/10.1016/j.tibs.2012.06.004
31. Li H.S., Zhou Y.N., Li L., Li S.F., Long D,. Chen X.L. et al. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 2019; 25: 101109. https://doi.org/10.1016/j.redox.2019.101109
32. Chan S.Y., Zhang Y.Y., Hemann C., Mahoney C.E., Zweier J.L., Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell. Metab. 2009; 10(4): 273–84. https://doi.org/10.1016/j.cmet.2009.08.015
33. Zenkov N.K., Kozhin P.M., Chechushkov A.V., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Mazes of Nrf2 regulation. Biochemistry (Moscow). 2017; 82(5): 556–64. https://doi.org/10.1134/S0006297917050030 https://elibrary.ru/xnkgwi (in Russian).
34. Iso T., Suzuki T., Baird L., Yamamoto M. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Mol. Cell. Biol. 2016; 36(24): 3100–12. https://doi.org/10.1128/mcb.00389-16
35. Kobayashi A., Kang M.I., Okawa H., Ohtsuji M., Zenke Y., Chiba T. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell. Biol. 2004; 24(16): 7130–9. https://doi.org/10.1128/mcb.24.16.7130-7139.2004
36. Zhang D.D., Lo S.C., Cross J.V., Templeton D.J., Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 2004; 24(24): 10941–53. https://doi.org/10.1128/mcb.24.24.10941-10953.2004
37. Walters T.S., McIntosh D.J., Ingram S.M., Tillery L., Motley E.D., Arinze I.J., et al. SUMO-Modification of Human Nrf2 at K110 and K533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cell. Physiol. Biochem. 2021; 55(2): 141–59. https://doi.org/10.33594/000000351
38. Kobayashi A., Kang M.I., Watai Y., Tong K.I., Shibata T., Uchida K., et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 2006; 26(1): 221–9. https://doi.org/10.1128/mcb.26.1.221-229.2006
39. Mathis B.J., Kato H., Hiramatsu Y. Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells. 2022; 11(23): 3855. https://doi.org/10.3390/cells11233855
40. Kensler T.W., Wakabayashi N., Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
41. Abalenikhina Yu.V., Myl'nikov P.Yu., Shchul'kin A.V., Chernykh I.V., Yakusheva E.N. Regulation and Role of Hypoxia-Induced Factor 1α (HIF-1α) under Conditions of Endogenous Oxidative Stress In Vitro. Bull. Exp. Biol. Med. 2022; 173(3): 312–6. https://doi.org/10.1007/s10517-022-05540-0 https://elibrary.ru/wnqvgu
42. Rybnikova E.A., Zenko M.Y., Barysheva V.S., Vetrovoy O. Acclimatization to Middle Attitude Hypoxia Masks the Symptoms of Experimental Posttraumatic Stress Disorder, but Does Not Affect Its Pathogenetic Mechanisms. Bull. Exp. Biol. Med. 2020; 168 (5): 614–7. https://doi.org/10.1007/s10517-020-04763-3
43. Rybnikova E., Samoilov M. Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front. Neurosci. 2015; 9: 388. https://doi.org/10.3389/fnins.2015.00388
44. Arkhipenko Yu.V., Sazontova T.G., Rice-Evans C. Hypertrophy and regression of rat heart: Free radical related metabolic systems. Pathophysiology. 1997; 4(4): 241–8. https://doi.org/10.1016/S0928-4680(97)10010-4 https://elibrary.ru/uzxnzn
45. Das D.K. Redox regulation of cardiomyocyte survival and death. Antioxid. Redox Signal. 2001; 3(1): 23–37. https://doi.org/10.1089/152308601750100461
46. Sazontova T.G., Anchishkina N.A., Zhukova A.G., Bedareva I.V., Pilaeva E.A., Kriventsova N.A. Reactive oxygen species and redox-signaling during adaptation to changes of oxygen level. Fiziologichniy zhurnal. 2008; 54(2): 18–32. https://elibrary.ru/sslosz (in Russian).
47. Haider T., Casucci G., Linser T., Faulhaber M., Gatterer H., Ott G. et al. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J. Hypertens. 2009; 27(8): 1648–54. https://doi.org/10.1097/hjh.0b013e32832c0018
48. Sazontova T.G., Zhukova A.G., Bedareva I.V. The role of active forms of oxygen and redox signaling in the protective effects of adaptation to hypoxia and hyperoxia. Voprosy giperbaricheskoy meditsiny. 2010; 3: 3–4. https://elibrary.ru/sdvcwd (in Russian).
49. Arkhipenko Y.V., Sazontova T.G., Zhukova A.G. Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bull. Exp. Biol. Med. 2005; 140(3): 278–81. https://doi.org/10.1007/s10517-005-0466-0 https://elibrary.ru/ljktnr
50. Burtscher J., Citherlet T., Camacho-Cardenosa A., Camacho-Cardenosa M., Raberin A., Krumm B., et al. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J. Physiol. 2024; 602(21): 5757–83. https://doi.org/10.1113/jp285230
51. Stryapko N.V., Sazontova T.G., Kostin A.I., Vdovina I.B., Arkhipenko Yu.V. Comparison of effects of adaptation to hypoxia or hyperoxia under low dose intoxication. Vestnik Severnogo (Arkticheskogo) federalnogo university. Seriya: Medico-biological nauki. 2013; 4: 61–9. https://elibrary.ru/rtehjx (in Russian).
52. Sazontova T.G., Stryapko N.V., Arkhipenko Y.V. Addition of Hyperoxic Component to Adaptation to Hypoxia Prevents Impairments Induced by Low Doses of Toxicants (Free Radical Oxidation and Proteins of HSP Family). Bull. Exp. Biol. Med. 2016; 160 (3): 304–7. https://doi.org/10.1007/s10517-016-3157-0 https://elibrary.ru/wqmuat
53. Ignatenko G.A., Mukhin I.V., Sochilin A.V., Golchenko V.M. Influence of complex cardio-respiratory recovery therapy on the efficiency of rehabilitation and quality of life on hypertensive patients with chronic obstructive pulmonary disease of dust etiology. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2023; 20(3): 86–93. https://doi.org/10.19163/1994-9480-2023-20-3-86-93 https://elibrary.ru/lqibqi
54. Shrine N., Izquierdo A.G., Chen J., Packer R., Hall R.J., Guyatt A.L. et al. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat. Genet. 2023; 55(3): 410–22. https://doi.org/10.1038/s41588-023-01314-0
55. Fan Y., Ma R., Du X., Chai D., Yang S., Ye Q. Small airway dysfunction in pneumoconiosis: a cross-sectional study. BMC Pulm. Med. 2022; 22(1): 167. https://doi.org/10.1186/s12890-022-01929-9
56. Zhou D., Fu D., Yan L., Peng L. Pulmonary Rehabilitation Strategies for the Treatment of Pneumoconiosis: A Narrative Review. Iran. J. Public Health. 2023; 52(11): 2234–47. https://doi.org/10.18502/ijph.v52i11.14024
57. Mallet R.T., Burtsche J., Gatterer H., Glazachev O., Millet G.P., Burtscher M. Hyperoxia-enhanced intermittent hypoxia conditioning: mechanisms and potential benefits. Med. Gas. Res. 2024; 14(3): 127–9. https://doi.org/10.4103/mgr.medgasres-d-23-00046
58. Martynov I.D., Panev N.I., Yamshchikova A.V., Fleishman A.N. Changes in autonomic regulation in workers under conditions of long-term fluoride intoxication. Gigiena i sanitariya. 2024; 103(4): 323–7. https://doi.org/10.47470/0016-9900-2024-103-4-323-327 https://elibrary.ru/yizdpc (in Russian).
Review
For citations:
Zhukova A.G., Kizichenko N.V., Bugaeva M.S., Mikhailova N.N., Filimonov E.S., Sazontova T.G. Use of body adaptation to different oxygen levels in the prevention of occupational lung pathology. Russian Journal of Occupational Health and Industrial Ecology. 2025;65(9):587-595. (In Russ.) https://doi.org/10.31089/1026-9428-2025-65-9-587-595. EDN: blpmsh






































