Preview

Russian Journal of Occupational Health and Industrial Ecology

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Single nucleotide polymorphisms associated with an increased risk of development or severity of occupational diseases under the influence of harmful production factors

https://doi.org/10.31089/1026-9428-2025-65-6-393-404

EDN: ciucva

Abstract

The scientific field related to the study of the genetic and epigenetic predisposition to the development of occupational diseases under the influence of harmful industrial factors is currently based on the use of high-performance molecular biological methods of genomic DNA analysis. Of particular interest are new methods for determining the primary structure of genomic DNA using technologies of mass parallel sequencing or Next Generation sequencing (NGS) and hybridization analysis of DNA using high-density microarrays (micromatrix analysis). The above technologies, combined with the use of statistical metadata processing methods and artificial intelligence capabilities, open up new perspectives in assessing and predicting the risks of developing socially significant diseases. The resulting data set can be crucial in solving the tasks of occupational risk management and prevention of occupational diseases under the influence of harmful industrial factors. The study aims to present the works on the search for functional single-nucleotide polymorphisms that are markers of an increased risk of developing certain cancers and occupational respiratory diseases in industrial workers exposed to carcinogens, xenobiotics, heavy metals, VGDF (vapors, gases, dust and fumes, vapors, gases, dust and smoke). The review pays special attention to the description of the identified genetic markers of predisposition to the development of chronic obstructive pulmonary disease (COPD, chronic obstructive pulmonary disease), one of the most common respiratory pathologies. In a number of cases, the influence of the ethnicity of the studied groups of workers on the risk of developing occupational diseases in the presence of one or another variant of polymorphism has been demonstrated. For further screening studies, it is advisable to use technological platforms (diagnostic systems) for multiplex analysis within no more than a few dozen identified genetic markers for which an association with the development of occupational diseases has been reliably shown.

Ethics. This study did not require the conclusion of an Ethics Committee.

Contributions:
Kuzmina L.P. — concept and design of the review, writing, editing;
Markelov M.L. — review design, collection, analysis and interpretation of data (literary sources), text writing;
Markelov K.M. — analysis and interpretation of data (literary sources), translation and validation of presentation of medical materials, writing, editing;
Yudin V.S. — concept and design of the review, writing, editing.

Funding. The study had no funding.

Conflict of interest. The authors declare no conflict of interest.

Received: 05.06.2025 / Accepted: 24.06.2025 / Published: 05.08.2025

About the Authors

Mikhail L. Markelov
Izmerov Research Institute of Occupational Health
Russian Federation

Leading Researcher, Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Cand. of Sci. (Biol.)

e-mail: mikhailmarkelov@gmail.com



Lyudmila P. Kuzmina
Izmerov Research Institute of Occupational Health
Russian Federation

Deputy Director for Research, Honored Scientist of the Russian Federation, Izmerov Research Institute of Occupational Health, Dr. of Sci. (Biol.), Professor

e-mail: lpkuzmina@mail.ru



Kirill M. Markelov
United Hospital with Polyclinic of the Administration of the President of the Russian Federation
Russian Federation

Anesthesiologist-Resuscitator, United Hospital with Polyclinic of the Administration of the President of the Russian Federation

e-mail: kira-markelov@yandex.ru



Vladimir S. Yudin
Center for Strategic Planning and Management of Medical and Biological Health Risks
Russian Federation

Director, Center for Strategic Planning and Management of Medical and Biological Health Risks, Dr. of Sci. (Med.), Professor

e-mail: VYudin@cspfmba.ru



References

1. Schneider V.A., Graves-Lindsay T., Howe K., Bouk N., Chen H.-C., Kitts P.A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017; 27(5): 849–864. https://doi.org/10.1101/gr.213611.116

2. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., et al. The complete sequence of a human genome. Science. 2022; 376(6588): 44–53. https://doi.org/10.1126/science.abj6987

3. Kuzmina L.P. Biochemical and molecular mechanisms of occurrence of occupational bronchopulmonary pathology. Pulmonologiya. 2008; (4): 107–110. https://doi.org/10.18093/0869-0189-2008-0-4-107-110 (in Russian).

4. Pastinen T., Sladek R., Gurd S., Sammak A., Ge B., Lepage P. et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics. 2004; 16(2): 184–193. https://doi.org/10.1152/physiolgenomics.00163.2003

5. Collins F.S., Brooks L.D., Chakravarti A. A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation. Genome Res. 1998; 8(12): 1229–1231. https://doi.org/10.1101/gr.8.12.1229

6. Ozaki K., Ohnishi Y., Iida A., Sekine A., Yamada R., Tsunoda T. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002; 32(4): 650–654. https://doi.org/10.1038/ng1047

7. GWAS Catalog. https://www.ebi.ac.uk/gwas/ (accessed: 18.02.2024).

8. Green J., Banks E., Berrington A., Darby S., Deo H., Newton R. N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene — environment interaction. Br. J. Cancer. 2000; 83(3): 412–417. https://doi.org/10.1054/bjoc.2000.1265

9. Hirvonen A. Polymorphic NATs and cancer predisposition. IARC Sci. Publ. 1999; 148: 251-70. PMID: 10493262.

10. Golka K., Prior V., Blaszkewicz M., Bolt H.M. (2002). The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol. Lett. 2002; 128(1–3): 229–241. https://doi.org/10.1016/s0378-4274(01)00544-6

11. Hein D.W. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat. Res. 2002; 506–507: 65–77. https://doi.org/10.1016/s0027-5107(02)00153-7

12. Johns L.E., Houlston R.S. N-acetyl transferase-2 and bladder cancer risk: A meta-analysis. Environ. Mol. Mutagen. 2000; 36(3): 221–227. https://vk.cc/cO8pve

13. Bell D.A., Taylor J.A., Butler M.A., Stephens E.A., Wiest J., Brubaker L.H. et al. SHORT COMMUNICATION: Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 1993; 14(8): 1689–1692. https://doi.org/10.1093/carcin/14.8.1689

14. Marcus P.M., Vineis P., Rothman N. NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics. 2000; 10(2): 115–122. https://doi.org/10.1097/00008571-200003000-00003

15. Green J., Banks E., Berrington A., Darby S., Deo H., Newton R. N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene–environment interaction. Br. J. Cancer. 2000; 83(3): 412–417. https://doi.org/10.1054/bjoc.2000.1265

16. Ma Q.W., Lin G.F., Chen J.G., Xiang C.Q., Guo W.C., Golka K., Shen J.H. Polymorphism of N-acetyltransferase 2 (NAT2) gene polymorphism in shanghai population: occupational and non-occupational bladder cancer patient groups. Biomed Environ Sci. 2004; 17(3): 291–8. PMID: 15602826. https://clck.ru/3MwL3S

17. Carreón T., Ruder A.M., Schulte P. A., Hayes R.B., Rothman N., Waters M., et al. NAT2 slow acetylation and bladder cancer in workers exposed to benzidine. Int. J. Cancer. 2005; 118(1): 161–168. https://doi.org/10.1002/ijc.21308

18. Nelso H.H., Wiencke J.K., Christiani D.C., Cheng T.J., Zuo Z.-F., Schwartz B.S., et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis. 1995; 16(5): 1243–1246. https://doi.org/10.1093/carcin/16.5.1243

19. Anuda V.R., Grignolli C.E., Gonqalves M.S., Soares M.C., Menezes R., Saad S.T., & Costa F.F. Prevalence of homozygosity for the deleted alleles of glutathione S‐transferase mu (GSTMl) and theta (GSTTl) among distinct ethnic groutx from Brazil: relevance to enviromental carcinogenesis? Clin. Genet. 1998; 54(3): 210–214. https://doi.org/10.1111/j.1399-0004.1998.tb04286.x

20. Zintzaras E. (2009). Glutathione S-Transferase M1 and T1 Genes and Susceptibility to Chronic Myeloid Leukemia: A Meta-Analysis. Genet. Test. Mol. Biomarkers. 2009; 13(6): 791–797. https://doi.org/10.1089/gtmb.2009.0079

21. Anttila S., Luostarinen L., Hirvonen A., Elovaara E., Karjalainen A., Nurminen T., et al. Pulmonary expression of glutathione S-transferase M3 in lung cancer patients: association with GSTM1 polymorphism, smoking, and asbestos exposure. Cancer. Res. 1995; 55(15): 3305–9. PMID: 7614465. https://clck.ru/3MwL9Q

22. Bell D.A., Taylor J.A., Paulson D.F., Robertson C.N., Mohler J.L., Lucier G.W. Genetic Risk and Carcinogen Exposure: a Common Inherited Defect of the Carcinogen-Metabolism Gene Glutathione S-Transferase M1 (GSTM1) That Increases Susceptibility to Bladder Cancer. J. Natl. Cancer Inst. 1993; 85(14): 1159–1164. https://doi.org/10.1093/jnci/85.14.1159

23. Sharma M., Gupta S., Singh K., Mehndiratta M., Gautam A., Kalra O.P. et al. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes Metab. Syndr. 2016; 10(4): 194–197. https://doi.org/10.1016/j.dsx.2016.06.006

24. Rong S.-L., Zhou X.-D., Wang Z.-K., Wang X.-L., Wang Y.-C., Xue C.-S., Li B. Glutathione S-Transferase M1 and T1 polymorphisms and hypertension risk: an updated meta-analysis. J. Hum. Hypertens. 2018; 33(6): 454–465. https://doi.org/10.1038/s41371-018-0133-3

25. Senhaji N., Kassogue Y., Fahimi M., Serbati N., Badre W., Nadifi S. Genetic Polymorphisms of Multidrug Resistance Gene‐1 (MDR1/ABCB1) and Glutathione S‐Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients. Mediators Inflamm. 2015; 2015(1). https://doi.org/10.1155/2015/248060

26. Stojanovic J., Milovanovic S., Pastorino R., Iavicoli I., Boccia S. Occupational exposures and genetic susceptibility to urinary tract cancers: a systematic review and meta-analysis. Eur. J. of Cancer Prev. 2018; 27(5): 468–476. https://doi.org/10.1097/cej.0000000000000364

27. Kuzmina L.P., Khotuleva A.G., Kovalevsky E.V., Anokhin N.N., Tskhomariya I.M. Association of genetic polymorphism of cytokines and antioxidant enzymes with the development of asbestosis. Russian Journal of Occupational Health and Industrial Ecology. 2020; 60(12): 898–903. https://doi.org/10.31089/1026-9428-2020-60-12-898-903 https://elibrary.ru/ckpiuv (in Russian).

28. Guedes Pinto T., Dias T.A., Renno A.C.M., de Barros Viana M., Ribeiro D.A. The role of genetic polymorphisms for inducing genotoxicity in workers occupationally exposed to benzene: a systematic review. Arch. Toxicol. 2024; 98(7): 1991–2005. https://doi.org/10.1007/s00204-024-03744-z

29. Aronica L., Ordovas J.M., Volkov A., Lamb J.J., Stone P.M., Minich D. et al. Genetic Biomarkers of Metabolic Detoxification for Personalized Lifestyle Medicine. Nutrients. 2022; 14(4): 768. https://doi.org/10.3390/nu14040768

30. Vassilieva O.S., Kuzmina L.P., Kulemina E.A., Kolyaskina M.M. Clinical and molecular aspects of occupational asthma development in meat packers. Pulmonologiya. 2012; 3: 39-44. https://doi.org/10.18093/0869-0189-2012-0-3-39-44 (in Russian).

31. Chronic obstructive pulmonary disease (COPD). https://clck.ru/3MwLS4 (accessed: 01.10.2024).

32. Avdeev S.N., Leshchenko I.V., Aisanov Z.R., Arkhipov V.V., Belevskiy A.S., Ovcharenko S.I., Emelyanov A.V., Sinopalnikov A.I., Shmelev E.I., Chuchalin A.G., on behalf of the working group for the development and revision of Federal clinical guidelines for COPD. New clinical guidelines for COPD — a paradigm shift: A review. Terapevticheskii Arkhiv. 2024: 96(3): 292–297. https://doi.org/10.26442/00403660.2024.03.202646 (in Russian).

33. Global strategy for prevention, diagnosis and management of COPD: 2024 Report. https://goldcopd.org/2024-gold-report/ (accessed: 01.08.2024).

34. Lieberman J., Winter B., & Sastre A. (1986). Alpha1-Antitrypsin Pi-Types in 965 COPD Patients. Chest. 1986; 89(3): 370–373. https://doi.org/10.1378/chest.89.3.370

35. Lamprecht B., McBurnie M.A., Vollmer W.M., Gudmundsson G., Welte T., Nizankowska-Mogilnicka E. et al. COPD in Never Smokers. Chest. 2011; 139(4): 752–763. https://doi.org/10.1378/chest.10-1253

36. Mehta A.J., Miedinger D., Keidel D., Bettschart R., Bircher A., Bridevaux P.-O. et al. Occupational Exposure to Dusts, Gases, and Fumes and Incidence of Chronic Obstructive Pulmonary Disease in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. American Am. J. Respir. Crit. Care. Med. 2012; 185(12): 1292–1300. https://doi.org/10.1164/rccm.201110-1917oc

37. Smolonska J., Wijmenga C., Postma D.S., & Boezen H.M. Meta-analyses on Suspected Chronic Obstructive Pulmonary Disease Genes. Am. J. Respir. Crit. Care Med. 2009; 180(7): 618–631. https://doi.org/10.1164/rccm.200905-0722oc

38. Pillai S.G., Ge D., Zhu G., Kong X., Shianna K.V., Need A.C. et al. A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci. PLoS Genet. 2009; 5(3): e1000421. https://doi.org/10.1371/journal.pgen.1000421

39. Hung R.J., McKay J.D., Gaborieau V., Boffetta P., Hashibe M., Zaridze D. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008; 452(7187): 633–637. https://doi.org/10.1038/nature06885

40. Thorgeirsson T.E., Geller F., Sulem P., Rafnar T., Wiste A., Magnusson K.P. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008; 452(7187): 638–642. https://doi.org/10.1038/nature06846

41. Repapi E., Sayers I., Wain L.V., Burton P.R., Johnson T., Obeidat M., et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 2009; 42(1): 36–44. https://doi.org/10.1038/ng.501

42. Hobbs B.D., de Jong K., Lamontagne M., Bossé Y., Shrine N., Artigas M.S. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 2017; 49(3): 426–432. https://doi.org/10.1038/ng.3752

43. Sakornsakolpat P., Prokopenko D., Lamontagne M., Reeve N.F., Guyatt A.L., Jackson V.E. et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 2019; 51(3): 494–505. https://doi.org/10.1038/s41588-018-0342-2

44. Castaldi P.J., Cho M.H., Litonjua A.A., Bakke P., Gulsvik A., Lomas D.A. et al. The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility. Am. J. Respir. Cell Mol. Biol. 2011; 45(6): 1147–1153. https://doi.org/10.1165/rcmb.2011-0055oc

45. Ganbold C., Jamiyansuren J., Tumurbaatar A., Bayarmaa A., Enebish T., Dashtseren I., & Jav S. (2021). The Cumulative Effect of Gene–Gene Interactions Between GSTM1, CHRNA3, CHRNA5 and SOD3 Gene Polymorphisms Combined with Smoking on COPD Risk. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 2857–2868. https://doi.org/10.2147/copd.s320841

46. Liao S.-Y., Lin X., Christiani D.C. Gene-environment interaction effects on lung function- a genome-wide association study within the Framingham heart study. Environ. Health. 2013; 12(1). https://doi.org/10.1186/1476-069x-12-101

47. Splansky G.L., Corey D., Yang Q., Atwood L.D., Cupples L.A., Benjamin E.J. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: Design, Recruitment, and Initial Examination. Am. J. Epidemiol. 2007; 165(11): 1328–1335. https://doi.org/10.1093/aje/kwm021

48. Blanc P.D., Iribarren C., Trupin L., Earnest G., Katz P.P., Balmes J., et al. Occupational exposures and the risk of COPD: dusty trades revisited. Thorax. 2008; 64(1): 6–12. https://doi.org/10.1136/thx.2008.099390

49. Chen Y., Huang P., Ai W., Li X., Guo W., Zhang J., & Yang J. Histone deacetylase activity is decreased in peripheral blood monocytes in patients with COPD. J. Inflamm. 2012; 9(1). https://doi.org/10.1186/1476-9255-9-10

50. Ito K., Ito M., Elliott W.M., Cosio B., Caramori G., Kon O.M. et al. Decreased Histone Deacetylase Activity in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2005; 352(19): 1967–1976. https://doi.org/10.1056/nejmoa041892

51. Marian E., Baraldo S., Visentin A., Papi A., Saetta M., Fabbri L.M., Maestrelli P. Up-Regulated Membrane and Nuclear Leukotriene B4 Receptors in COPD. Chest. 2006; 129(6): 1523–1530. https://doi.org/10.1378/chest.129.6.1523

52. Liu Y., Liang W.-B., Gao L.-B., Pan X.-M., Chen T.-Y., Wang Y.-Y. et al. CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum. Immunol. 2010; 71(11): 1141–1146. https://doi.org/10.1016/j.humimm.2010.08.007

53. Zeng X., Vonk J.M., van der Plaat D.A., Faiz A., Paré P.D., Joubert P. et al. Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms. Environ. Int. 2019; 122: 263–269. https://doi.org/10.1016/j.envint.2018.11.017

54. de Jong K., Boezen H.M., Kromhout H., Vermeulen R., Postma D.S., Vonk J.M. Pesticides and other occupational exposures are associated with airway obstruction: the LifeLines cohort study. Occup. Environ Med. 2013; 71(2): 88–96. https://doi.org/10.1136/oemed-2013-101639

55. Vasil'eva O.S., Kuz'mina L.P., Kravchenko N.Yu. A role of molecular analysis for diagnosis and prevention of occupational lung diseases. Pulmonologiya. 2017; 27(2): 198–205. https://doi.org/10.18093/0869-0189-2017-27-2-198-205 (in Russian).

56. Chiarella P., Capone P., Carbonari D., Sisto R. A Predictive Model Assessing Genetic Susceptibility Risk at Workplace. Int. J. Environ. Res. Public. Health. 2019; 16(11): 2012. https://doi.org/10.3390/ijerph16112012

57. About the Ensembl Project. http://grch37.ensembl.org/info/about/index.html (accessed: 27.04.2024).


Review

For citations:


Markelov M.L., Kuzmina L.P., Markelov K.M., Yudin V.S. Single nucleotide polymorphisms associated with an increased risk of development or severity of occupational diseases under the influence of harmful production factors. Russian Journal of Occupational Health and Industrial Ecology. 2025;65(6):393-404. (In Russ.) https://doi.org/10.31089/1026-9428-2025-65-6-393-404. EDN: ciucva

Views: 23


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)