

Single nucleotide polymorphisms associated with an increased risk of development or severity of occupational diseases under the influence of harmful production factors
https://doi.org/10.31089/1026-9428-2025-65-6-393-404
EDN: ciucva
Abstract
The scientific field related to the study of the genetic and epigenetic predisposition to the development of occupational diseases under the influence of harmful industrial factors is currently based on the use of high-performance molecular biological methods of genomic DNA analysis. Of particular interest are new methods for determining the primary structure of genomic DNA using technologies of mass parallel sequencing or Next Generation sequencing (NGS) and hybridization analysis of DNA using high-density microarrays (micromatrix analysis). The above technologies, combined with the use of statistical metadata processing methods and artificial intelligence capabilities, open up new perspectives in assessing and predicting the risks of developing socially significant diseases. The resulting data set can be crucial in solving the tasks of occupational risk management and prevention of occupational diseases under the influence of harmful industrial factors. The study aims to present the works on the search for functional single-nucleotide polymorphisms that are markers of an increased risk of developing certain cancers and occupational respiratory diseases in industrial workers exposed to carcinogens, xenobiotics, heavy metals, VGDF (vapors, gases, dust and fumes, vapors, gases, dust and smoke). The review pays special attention to the description of the identified genetic markers of predisposition to the development of chronic obstructive pulmonary disease (COPD, chronic obstructive pulmonary disease), one of the most common respiratory pathologies. In a number of cases, the influence of the ethnicity of the studied groups of workers on the risk of developing occupational diseases in the presence of one or another variant of polymorphism has been demonstrated. For further screening studies, it is advisable to use technological platforms (diagnostic systems) for multiplex analysis within no more than a few dozen identified genetic markers for which an association with the development of occupational diseases has been reliably shown.
Ethics. This study did not require the conclusion of an Ethics Committee.
Contributions:
Kuzmina L.P. — concept and design of the review, writing, editing;
Markelov M.L. — review design, collection, analysis and interpretation of data (literary sources), text writing;
Markelov K.M. — analysis and interpretation of data (literary sources), translation and validation of presentation of medical materials, writing, editing;
Yudin V.S. — concept and design of the review, writing, editing.
Funding. The study had no funding.
Conflict of interest. The authors declare no conflict of interest.
Received: 05.06.2025 / Accepted: 24.06.2025 / Published: 05.08.2025
About the Authors
Mikhail L. MarkelovRussian Federation
Leading Researcher, Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Cand. of Sci. (Biol.)
e-mail: mikhailmarkelov@gmail.com
Lyudmila P. Kuzmina
Russian Federation
Deputy Director for Research, Honored Scientist of the Russian Federation, Izmerov Research Institute of Occupational Health, Dr. of Sci. (Biol.), Professor
e-mail: lpkuzmina@mail.ru
Kirill M. Markelov
Russian Federation
Anesthesiologist-Resuscitator, United Hospital with Polyclinic of the Administration of the President of the Russian Federation
e-mail: kira-markelov@yandex.ru
Vladimir S. Yudin
Russian Federation
Director, Center for Strategic Planning and Management of Medical and Biological Health Risks, Dr. of Sci. (Med.), Professor
e-mail: VYudin@cspfmba.ru
References
1. Schneider V.A., Graves-Lindsay T., Howe K., Bouk N., Chen H.-C., Kitts P.A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017; 27(5): 849–864. https://doi.org/10.1101/gr.213611.116
2. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., et al. The complete sequence of a human genome. Science. 2022; 376(6588): 44–53. https://doi.org/10.1126/science.abj6987
3. Kuzmina L.P. Biochemical and molecular mechanisms of occurrence of occupational bronchopulmonary pathology. Pulmonologiya. 2008; (4): 107–110. https://doi.org/10.18093/0869-0189-2008-0-4-107-110 (in Russian).
4. Pastinen T., Sladek R., Gurd S., Sammak A., Ge B., Lepage P. et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics. 2004; 16(2): 184–193. https://doi.org/10.1152/physiolgenomics.00163.2003
5. Collins F.S., Brooks L.D., Chakravarti A. A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation. Genome Res. 1998; 8(12): 1229–1231. https://doi.org/10.1101/gr.8.12.1229
6. Ozaki K., Ohnishi Y., Iida A., Sekine A., Yamada R., Tsunoda T. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002; 32(4): 650–654. https://doi.org/10.1038/ng1047
7. GWAS Catalog. https://www.ebi.ac.uk/gwas/ (accessed: 18.02.2024).
8. Green J., Banks E., Berrington A., Darby S., Deo H., Newton R. N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene — environment interaction. Br. J. Cancer. 2000; 83(3): 412–417. https://doi.org/10.1054/bjoc.2000.1265
9. Hirvonen A. Polymorphic NATs and cancer predisposition. IARC Sci. Publ. 1999; 148: 251-70. PMID: 10493262.
10. Golka K., Prior V., Blaszkewicz M., Bolt H.M. (2002). The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol. Lett. 2002; 128(1–3): 229–241. https://doi.org/10.1016/s0378-4274(01)00544-6
11. Hein D.W. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat. Res. 2002; 506–507: 65–77. https://doi.org/10.1016/s0027-5107(02)00153-7
12. Johns L.E., Houlston R.S. N-acetyl transferase-2 and bladder cancer risk: A meta-analysis. Environ. Mol. Mutagen. 2000; 36(3): 221–227. https://vk.cc/cO8pve
13. Bell D.A., Taylor J.A., Butler M.A., Stephens E.A., Wiest J., Brubaker L.H. et al. SHORT COMMUNICATION: Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 1993; 14(8): 1689–1692. https://doi.org/10.1093/carcin/14.8.1689
14. Marcus P.M., Vineis P., Rothman N. NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics. 2000; 10(2): 115–122. https://doi.org/10.1097/00008571-200003000-00003
15. Green J., Banks E., Berrington A., Darby S., Deo H., Newton R. N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene–environment interaction. Br. J. Cancer. 2000; 83(3): 412–417. https://doi.org/10.1054/bjoc.2000.1265
16. Ma Q.W., Lin G.F., Chen J.G., Xiang C.Q., Guo W.C., Golka K., Shen J.H. Polymorphism of N-acetyltransferase 2 (NAT2) gene polymorphism in shanghai population: occupational and non-occupational bladder cancer patient groups. Biomed Environ Sci. 2004; 17(3): 291–8. PMID: 15602826. https://clck.ru/3MwL3S
17. Carreón T., Ruder A.M., Schulte P. A., Hayes R.B., Rothman N., Waters M., et al. NAT2 slow acetylation and bladder cancer in workers exposed to benzidine. Int. J. Cancer. 2005; 118(1): 161–168. https://doi.org/10.1002/ijc.21308
18. Nelso H.H., Wiencke J.K., Christiani D.C., Cheng T.J., Zuo Z.-F., Schwartz B.S., et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis. 1995; 16(5): 1243–1246. https://doi.org/10.1093/carcin/16.5.1243
19. Anuda V.R., Grignolli C.E., Gonqalves M.S., Soares M.C., Menezes R., Saad S.T., & Costa F.F. Prevalence of homozygosity for the deleted alleles of glutathione S‐transferase mu (GSTMl) and theta (GSTTl) among distinct ethnic groutx from Brazil: relevance to enviromental carcinogenesis? Clin. Genet. 1998; 54(3): 210–214. https://doi.org/10.1111/j.1399-0004.1998.tb04286.x
20. Zintzaras E. (2009). Glutathione S-Transferase M1 and T1 Genes and Susceptibility to Chronic Myeloid Leukemia: A Meta-Analysis. Genet. Test. Mol. Biomarkers. 2009; 13(6): 791–797. https://doi.org/10.1089/gtmb.2009.0079
21. Anttila S., Luostarinen L., Hirvonen A., Elovaara E., Karjalainen A., Nurminen T., et al. Pulmonary expression of glutathione S-transferase M3 in lung cancer patients: association with GSTM1 polymorphism, smoking, and asbestos exposure. Cancer. Res. 1995; 55(15): 3305–9. PMID: 7614465. https://clck.ru/3MwL9Q
22. Bell D.A., Taylor J.A., Paulson D.F., Robertson C.N., Mohler J.L., Lucier G.W. Genetic Risk and Carcinogen Exposure: a Common Inherited Defect of the Carcinogen-Metabolism Gene Glutathione S-Transferase M1 (GSTM1) That Increases Susceptibility to Bladder Cancer. J. Natl. Cancer Inst. 1993; 85(14): 1159–1164. https://doi.org/10.1093/jnci/85.14.1159
23. Sharma M., Gupta S., Singh K., Mehndiratta M., Gautam A., Kalra O.P. et al. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes Metab. Syndr. 2016; 10(4): 194–197. https://doi.org/10.1016/j.dsx.2016.06.006
24. Rong S.-L., Zhou X.-D., Wang Z.-K., Wang X.-L., Wang Y.-C., Xue C.-S., Li B. Glutathione S-Transferase M1 and T1 polymorphisms and hypertension risk: an updated meta-analysis. J. Hum. Hypertens. 2018; 33(6): 454–465. https://doi.org/10.1038/s41371-018-0133-3
25. Senhaji N., Kassogue Y., Fahimi M., Serbati N., Badre W., Nadifi S. Genetic Polymorphisms of Multidrug Resistance Gene‐1 (MDR1/ABCB1) and Glutathione S‐Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients. Mediators Inflamm. 2015; 2015(1). https://doi.org/10.1155/2015/248060
26. Stojanovic J., Milovanovic S., Pastorino R., Iavicoli I., Boccia S. Occupational exposures and genetic susceptibility to urinary tract cancers: a systematic review and meta-analysis. Eur. J. of Cancer Prev. 2018; 27(5): 468–476. https://doi.org/10.1097/cej.0000000000000364
27. Kuzmina L.P., Khotuleva A.G., Kovalevsky E.V., Anokhin N.N., Tskhomariya I.M. Association of genetic polymorphism of cytokines and antioxidant enzymes with the development of asbestosis. Russian Journal of Occupational Health and Industrial Ecology. 2020; 60(12): 898–903. https://doi.org/10.31089/1026-9428-2020-60-12-898-903 https://elibrary.ru/ckpiuv (in Russian).
28. Guedes Pinto T., Dias T.A., Renno A.C.M., de Barros Viana M., Ribeiro D.A. The role of genetic polymorphisms for inducing genotoxicity in workers occupationally exposed to benzene: a systematic review. Arch. Toxicol. 2024; 98(7): 1991–2005. https://doi.org/10.1007/s00204-024-03744-z
29. Aronica L., Ordovas J.M., Volkov A., Lamb J.J., Stone P.M., Minich D. et al. Genetic Biomarkers of Metabolic Detoxification for Personalized Lifestyle Medicine. Nutrients. 2022; 14(4): 768. https://doi.org/10.3390/nu14040768
30. Vassilieva O.S., Kuzmina L.P., Kulemina E.A., Kolyaskina M.M. Clinical and molecular aspects of occupational asthma development in meat packers. Pulmonologiya. 2012; 3: 39-44. https://doi.org/10.18093/0869-0189-2012-0-3-39-44 (in Russian).
31. Chronic obstructive pulmonary disease (COPD). https://clck.ru/3MwLS4 (accessed: 01.10.2024).
32. Avdeev S.N., Leshchenko I.V., Aisanov Z.R., Arkhipov V.V., Belevskiy A.S., Ovcharenko S.I., Emelyanov A.V., Sinopalnikov A.I., Shmelev E.I., Chuchalin A.G., on behalf of the working group for the development and revision of Federal clinical guidelines for COPD. New clinical guidelines for COPD — a paradigm shift: A review. Terapevticheskii Arkhiv. 2024: 96(3): 292–297. https://doi.org/10.26442/00403660.2024.03.202646 (in Russian).
33. Global strategy for prevention, diagnosis and management of COPD: 2024 Report. https://goldcopd.org/2024-gold-report/ (accessed: 01.08.2024).
34. Lieberman J., Winter B., & Sastre A. (1986). Alpha1-Antitrypsin Pi-Types in 965 COPD Patients. Chest. 1986; 89(3): 370–373. https://doi.org/10.1378/chest.89.3.370
35. Lamprecht B., McBurnie M.A., Vollmer W.M., Gudmundsson G., Welte T., Nizankowska-Mogilnicka E. et al. COPD in Never Smokers. Chest. 2011; 139(4): 752–763. https://doi.org/10.1378/chest.10-1253
36. Mehta A.J., Miedinger D., Keidel D., Bettschart R., Bircher A., Bridevaux P.-O. et al. Occupational Exposure to Dusts, Gases, and Fumes and Incidence of Chronic Obstructive Pulmonary Disease in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. American Am. J. Respir. Crit. Care. Med. 2012; 185(12): 1292–1300. https://doi.org/10.1164/rccm.201110-1917oc
37. Smolonska J., Wijmenga C., Postma D.S., & Boezen H.M. Meta-analyses on Suspected Chronic Obstructive Pulmonary Disease Genes. Am. J. Respir. Crit. Care Med. 2009; 180(7): 618–631. https://doi.org/10.1164/rccm.200905-0722oc
38. Pillai S.G., Ge D., Zhu G., Kong X., Shianna K.V., Need A.C. et al. A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci. PLoS Genet. 2009; 5(3): e1000421. https://doi.org/10.1371/journal.pgen.1000421
39. Hung R.J., McKay J.D., Gaborieau V., Boffetta P., Hashibe M., Zaridze D. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008; 452(7187): 633–637. https://doi.org/10.1038/nature06885
40. Thorgeirsson T.E., Geller F., Sulem P., Rafnar T., Wiste A., Magnusson K.P. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008; 452(7187): 638–642. https://doi.org/10.1038/nature06846
41. Repapi E., Sayers I., Wain L.V., Burton P.R., Johnson T., Obeidat M., et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 2009; 42(1): 36–44. https://doi.org/10.1038/ng.501
42. Hobbs B.D., de Jong K., Lamontagne M., Bossé Y., Shrine N., Artigas M.S. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 2017; 49(3): 426–432. https://doi.org/10.1038/ng.3752
43. Sakornsakolpat P., Prokopenko D., Lamontagne M., Reeve N.F., Guyatt A.L., Jackson V.E. et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 2019; 51(3): 494–505. https://doi.org/10.1038/s41588-018-0342-2
44. Castaldi P.J., Cho M.H., Litonjua A.A., Bakke P., Gulsvik A., Lomas D.A. et al. The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility. Am. J. Respir. Cell Mol. Biol. 2011; 45(6): 1147–1153. https://doi.org/10.1165/rcmb.2011-0055oc
45. Ganbold C., Jamiyansuren J., Tumurbaatar A., Bayarmaa A., Enebish T., Dashtseren I., & Jav S. (2021). The Cumulative Effect of Gene–Gene Interactions Between GSTM1, CHRNA3, CHRNA5 and SOD3 Gene Polymorphisms Combined with Smoking on COPD Risk. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 2857–2868. https://doi.org/10.2147/copd.s320841
46. Liao S.-Y., Lin X., Christiani D.C. Gene-environment interaction effects on lung function- a genome-wide association study within the Framingham heart study. Environ. Health. 2013; 12(1). https://doi.org/10.1186/1476-069x-12-101
47. Splansky G.L., Corey D., Yang Q., Atwood L.D., Cupples L.A., Benjamin E.J. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: Design, Recruitment, and Initial Examination. Am. J. Epidemiol. 2007; 165(11): 1328–1335. https://doi.org/10.1093/aje/kwm021
48. Blanc P.D., Iribarren C., Trupin L., Earnest G., Katz P.P., Balmes J., et al. Occupational exposures and the risk of COPD: dusty trades revisited. Thorax. 2008; 64(1): 6–12. https://doi.org/10.1136/thx.2008.099390
49. Chen Y., Huang P., Ai W., Li X., Guo W., Zhang J., & Yang J. Histone deacetylase activity is decreased in peripheral blood monocytes in patients with COPD. J. Inflamm. 2012; 9(1). https://doi.org/10.1186/1476-9255-9-10
50. Ito K., Ito M., Elliott W.M., Cosio B., Caramori G., Kon O.M. et al. Decreased Histone Deacetylase Activity in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2005; 352(19): 1967–1976. https://doi.org/10.1056/nejmoa041892
51. Marian E., Baraldo S., Visentin A., Papi A., Saetta M., Fabbri L.M., Maestrelli P. Up-Regulated Membrane and Nuclear Leukotriene B4 Receptors in COPD. Chest. 2006; 129(6): 1523–1530. https://doi.org/10.1378/chest.129.6.1523
52. Liu Y., Liang W.-B., Gao L.-B., Pan X.-M., Chen T.-Y., Wang Y.-Y. et al. CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum. Immunol. 2010; 71(11): 1141–1146. https://doi.org/10.1016/j.humimm.2010.08.007
53. Zeng X., Vonk J.M., van der Plaat D.A., Faiz A., Paré P.D., Joubert P. et al. Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms. Environ. Int. 2019; 122: 263–269. https://doi.org/10.1016/j.envint.2018.11.017
54. de Jong K., Boezen H.M., Kromhout H., Vermeulen R., Postma D.S., Vonk J.M. Pesticides and other occupational exposures are associated with airway obstruction: the LifeLines cohort study. Occup. Environ Med. 2013; 71(2): 88–96. https://doi.org/10.1136/oemed-2013-101639
55. Vasil'eva O.S., Kuz'mina L.P., Kravchenko N.Yu. A role of molecular analysis for diagnosis and prevention of occupational lung diseases. Pulmonologiya. 2017; 27(2): 198–205. https://doi.org/10.18093/0869-0189-2017-27-2-198-205 (in Russian).
56. Chiarella P., Capone P., Carbonari D., Sisto R. A Predictive Model Assessing Genetic Susceptibility Risk at Workplace. Int. J. Environ. Res. Public. Health. 2019; 16(11): 2012. https://doi.org/10.3390/ijerph16112012
57. About the Ensembl Project. http://grch37.ensembl.org/info/about/index.html (accessed: 27.04.2024).
Review
For citations:
Markelov M.L., Kuzmina L.P., Markelov K.M., Yudin V.S. Single nucleotide polymorphisms associated with an increased risk of development or severity of occupational diseases under the influence of harmful production factors. Russian Journal of Occupational Health and Industrial Ecology. 2025;65(6):393-404. (In Russ.) https://doi.org/10.31089/1026-9428-2025-65-6-393-404. EDN: ciucva