On the mechanisms of cardiotoxic action of various nanoparticles in experimental studies in vivo and in vitro
https://doi.org/10.31089/1026-9428-2024-64-2-121-128
EDN: ccuokb
Abstract
Nanoparticles are the main product of artificial technologies, and also accompany production processes in various industries. The main routes of exposure to nanoparticles are through the respiratory tract, skin and orally; therefore, most toxicological studies have focused on the lungs, liver and skin. Nanoscale particles easily penetrate the alveolar-capillary barrier and enter the bloodstream of the body. Thus, they can reach various organs, accumulate, cause toxicity, and the heart is one of the target organs.
The study aims to search and systematize the literature data on the mechanisms of cardiotoxic action of nanoparticles of various chemical nature (elemental, elementoxide).
The researchers conducted a literature review as part of a study of the cardiotoxic effect of nanoparticles on the body. The review is based on modern original research. When searching for literary sources, the authors used the following information databases: PubMed, Google Scholar, CyberLeninka Scientific Electronic Library, Russian Scientific Electronic Library eLibrary.Ru. In total, there were 37 original articles in the review, including 35 foreign ones, and 15 — no older than 5 years. The development of oxidative stress and an inflammatory reaction leads to the formation of cardiotoxicity of nanomaterials, which subsequently leads to necrosis and apoptosis of cells.
Indicators of oxidative damage to lipids and DNA molecules indicate that the tissues of the heart and lungs suffer from oxidative stress not only as a result of an increase in the formation of reactive oxygen species, but also due to a malfunction of antioxidant mechanisms caused by exposure to nanoparticles.
Studies using endothelial cells have shown that exposure to metal and metal oxide nanoparticles can promote the release of cytokines, the expression of adhesion molecules and monocyte adhesion, which are key events associated with the development of cardiovascular diseases.
These results, combined with other in vitro data, suggest that direct contact of the cardiovascular system with metal-based nanoparticles may cause cardiovascular toxicity associated with inflammatory reactions, oxidative stress, autophagy dysfunction and endoplasmic reticulum stress. Oxidative stress induced by nanoparticles leads to apoptosis and inflammatory reactions in cardiomyocytes, as well as disrupts the integrity of mitochondrial membranes and cell organelles, leading to various heart pathologies. One of the main mechanisms of toxicity of nanoparticles of different chemical nature is oxidative stress.
Contribution:
Klinova S.V. — literature review, preparation of the manuscript of the article;
Minigalieva I.A. — concept and design of the study;
Sutunkova M.P. — concept and design of the study;
Nikogosyan K.M. — literature review, preparation of the manuscript of the article.
Funding. The study had no funding.
Conflict of interests. The authors declare no conflict of interests.
Received: 29.11.2023 / Accepted: 21.12.2023 / Published: 15.03.2024
About the Authors
Svetlana V. KlinovaRussian Federation
The Head of Industrial Toxicology Laboratory, Cand. of Sci. (Biol.)
e-mail: klinova.svetlana@gmail.com
Ilzira A. Minigalieva
Russian Federation
Marina P. Sutunkova
Russian Federation
Karen M. Nikogosyan
Russian Federation
References
1. Ajdary M., Keyhanfar F., Moosavi M.A., Shabani R., Mehdizadeh M., Varma R.S. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J. Reprod. Immunol. 2021; 148: 103384. https://doi.org/10.1016/j.jri.2021.103384
2. Surendhiran D., Sirajunnisa A., Tamilselvam K. Silver–magnetic nanocomposites for water purification. Environ. Chem. Lett. 2017; 15(3): 367–386. https://doi.org/10.1007/s10311-017-0635-1
3. Cao M., Li B., Guo M., Liu Y., Zhang L., Wang Y., et al. In vivo percutaneous permeation of gold nanomaterials in consumer cosmetics: implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology. 2021; 15(1): 131–144. https://doi.org/10.1080/17435390.2020.1860264
4. Chen J., Dong X., Xin Y., Zhao M. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat. Toxicol. 2011; 101(3–4): 493–499. https://doi.org/10.1016/j.aquatox.2010.12.004
5. Forini F., Canale P., Nicolini G., Iervasi G. Mitochondria-targeted drug delivery in cardiovascular disease: a long road to nano-cardio medicine. Pharmaceutics. 2020; 12(11): 1122. https://doi.org/10.3390/pharmaceutics12111122
6. Du Z.-J., Cui G.-Q., Zhang J., Liu X.-M., Zhang Z.-H., Jia Q., et al. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway. Int. J. Nanomedicine. 2017; 12: 2179–2188. https://doi.org/10.2147/IJN.S127904
7. Sheng L., Wang X., Sang X., Ze Y., Zhao X., Liu D. et al. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide. J. Biomed. Mater. Res. A. 2013; 101(11): 3238–3246. https://doi.org/10.1002/jbm.a.34634
8. Huerta-García E., Zepeda-Quiroz I., Sánchez-Barrera H., Colín-Val Z., Alfaro-Moreno E., Ramos-Godinez M.D.P. et al. Internalization of titanium dioxide nanoparticles is cytotoxic for H9c2 rat cardiomyoblasts. Molecules. 2018; 23(8): 1955. https://doi.org/10.3390/molecules23081955
9. Panov V., Minigalieva I., Bushueva T., Fröhlich E., Meindl C., Absenger-Novak M., et al. Some peculiarities in the dose dependence of separate and combined in vitro cardiotoxicity effects induced by CdS and PbS nanoparticles with special attention to hormesis manifestations. Dose Response. 2020; 18(1): 1559325820914180. https://doi.org/10.1177/1559325820914180
10. Calderón-Garcidueñas L., González-Maciel A., Reynoso-Robles R., Rodríguez-López J.L., Silva-Pereyra H.G., Labrada-Delgado G.J. et al. Environmental Fe, Ti, Al, Cu, Hg, Bi, and Si nanoparticles in the atrioventricular conduction axis and the associated ultrastructural damage in young urbanites: cardiac arrhythmias caused by anthropogenic, industrial, e-waste, and indoor nanoparticles. Environ. Sci. Technol. 2021; 55(12): 8203–8214. https://doi.org/10.1021/acs.est.1c01733
11. Lipatova V.A., Botchey V.M., Pistsova T.V., Fedoseev V.A., Klochkova A.V., Belyakov V.K. et al. Ultrastructural evidence of gold nanoparticles cardiotoxicity in experiment in vivo. Vestnik Rossiyskogo gosudarstvennogo meditsinskogo universiteta. 2013; (3): 59–63 (in Russian).
12. Shi J., Sun X., Lin Y., Zou X., Li Z., Liao Y. et al. Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials. 2014; 35(24): 6657–6666. https://doi.org/10.1016/j.biomaterials.2014.04.093
13. Lin C.-X., Yang S.-Y., Gu J.-L., Meng J., Xu H.-Y., Cao J.-M. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology. 2017; 11(6): 827–837. https://doi.org/10.1080/17435390.2017.1367047
14. Ferdous Z., Al-Salam S., Greish Y.E., Ali B.H., Nemmar A. Pulmonary exposure to silver nanoparticles impairs cardiovascular homeostasis: Effects of coating, dose and time. Toxicol Appl Pharmacol. 2019; 367: 36–50. https://doi.org/10.1016/j.taap.2019.01.006
15. Yousef M.I., Abuzreda A.A, Kamel M.A.-N. Cardiotoxicity and lung toxicity in male rats induced by long term exposure to iron oxide and silver nanoparticles. Exp. Ther. Med. 2019; 18(6): 4329–4339. https://doi.org/10.3892/etm.2019.8108
16. Korani M., Rezayat S.M., Arbabi Bidgoli S. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J. Pharm. Res. 2013; 12(3): 511–9.
17. Lin C.X., Gu J.L., Cao J.M. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine. 2019; 14: 5595–5609. https://doi.org/10.2147/IJN.S209135
18. Duan J., Yu Y., Li Y., Li Y., Liu H., Jing L. et al. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology. 2016; 10(5): 575–85. https://doi.org/10.3109/17435390.2015.1102981
19. Feng L., Ning R., Liu J., Liang S., Xu Q., Liu Y. et al. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. J. Hazard. Mater. 2020; 391: 122206. https://doi.org/10.1016/j.jhazmat.2020.122206
20. Cui G., Zhang H., Guo Q., Shan S., Chen S., Li C. et al. Oxidative stress-mediated mitochondrial pathway-dependent apoptosis is induced by silica nanoparticles in H9c2 cardiomyocytes. Toxicol. Mech. Methods. 2020; 30(9): 646–655. https://doi.org/10.1080/15376516.2020.1805664
21. Lu R.X.Z., Lai B.F.L., Benge T., Wang E.Y., Huyer L.D., Rafatian N. et al. Heart-on-a-chip platform for assessing toxicity of air pollution related nanoparticles. Adv. Mater. Technol. 2021; 6(2): 2000726. https://doi.org/10.1002/admt.202000726
22. Tousson E., El-Gharbawy D.M. Impact of Saussurea lappa root extract against copper oxide nanoparticles induced oxidative stress and toxicity in rat cardiac tissues. Environ. Toxicol. 2023; 38(2): 415–421. https://doi.org/10.1002/tox.23688
23. Manickam V., Periyasamy M., Dhakshinamoorthy V., Panneerselvam L., Perumal E. Recurrent exposure to ferric oxide nanoparticles alters myocardial oxidative stress, apoptosis and necrotic markers in male mice. Chem. Biol. Interact. 2017; 278: 54–64. https://doi.org/10.1016/j.cbi.2017.10.003
24. Shen Y., Gong S., Li J., Wang Y., Zhang X., Zheng H. et al. Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Int. J. Nanomedicine. 2019; 14: 6103–6115. https://doi.org/10.2147/IJN.S209820
25. Al-Rasheed N.M., Faddah L., Ibrahim H., Mohamed A., Abdelbaky N. Role of carnosine and melatonin in ameliorating cardiotoxicity of titanium dioxide nanoparticles in the rats. Braz. Arch. Biol. Technol. 2015; 58(4): 577–586. https://doi.org/10.1590/S1516-8913201500014
26. Savi M., Rossi S., Bocchi L., Gennaccaro L., Cacciani F., Perotti A. et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part. Fibre Toxicol. 2014; 11: 63. https://doi.org/10.1186/s12989-014-0063-3
27. Hong F., Wu N., Zhao X., Tian Y., Zhou Y., Chen T. et al. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. J. Biomed. Mater. Res. A. 2016; 104(12): 2917–2927. https://doi.org/10.1002/jbm.a.35831
28. Hathaway Q.A., Nichols C.E., Shepherd D.L., Stapleton P.A., McLaughlin S.L., Stricker J.C., et al. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am. J. Physiol. Heart Circ. Physiol. 2017; 312(3): H446–H458. https://doi.org/10.1152/ajpheart.00634.2016
29. Chuang H.C., Juan H.T., Chang C.N., Yan Y.H., Yuan T.H., Wang J.S. et al. Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology. 2014; 8(6): 593–604. https://doi.org/10.3109/17435390.2013.809809
30. Liang S., Sun K., Wang Y., Dong S., Wang C., Liu L. et al. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem. Biol. Interact. 2016; 258: 40–51. https://doi.org/10.1016/j.cbi.2016.08.013
31. Li Y., Li F., Zhang L., Zhang C., Peng H., Lan F. et al. Zinc oxide nanoparticles induce mitochondrial biogenesis impairment and cardiac dysfunction in human iPSC-derived cardiomyocytes. Int. J. Nanomedicine. 2020; 15: 2669–2683. https://doi.org/10.2147/IJN.S249912
32. Habibian M., Biniaz S., Moosavi S.J. Protective role of short-term aerobic exercise against zinc oxide nanoparticles-induced cardiac oxidative stress via possible changes of apelin, angiotensin II/angiotensin II type I signalling pathway. Cardiovasc. Toxicol. 2023; 23(5–6): 177–184. https://doi.org/10.1007/s12012-023-09792-8
33. Klinova S.V., Protsenko Y.L., Minigalieva I.A., Sutunkova M.P, Gerzen O.P., Nabiev S.R. et al. Cardiotoxicity in rats following subchronic exposure to cadmium chloride solution and cadmium oxide nanoparticles. Public Health Toxicol. 2022; 2(2): 11. https://doi.org/10.18332/pht/150787
34. Minigalieva I.A., Sutunkova M.P., Klinova S.V., Solovyeva S.N., Privalova L.I., Gurvich V.B. et al. The experimental study of cardiotoxic effects of lead oxide nanoparticles by their various routes of exposure. Zdorov’e naseleniya i sreda obitaniya. 2020; (9(330)): 67–72 (in Russian). https://doi.org/10.35627/2219-5238/2020-330-9-67-72
35. Elgharabawy R.M., Alhowail A.H., Emara A.M., Aldubayan M.A., Ahmed A.S. The impact of chicory (Cichoriumintybus L.) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021; 137: 111324. https://doi.org/10.1016/j.biopha.2021.111324
36. Guerrero-Beltrán C.E., Bernal-Ramírez J., García-García A., Lozano O., Torre-Amione G., Ornelas-Soto N. et al. PS227 silica nanoparticles induces cardiotoxicity interfering with Ca2+ handling in adult rat cardiomyocytes. Global Heart. 2016; 11, 2: e51. https://doi.org/10.1016/j.gheart.2016.03.179
37. Guerrero-Beltrán C.E., Bernal-Ramírez J., Lozano O., Oropeza-Almazán Y., Castillo E.C., Garza J.R. et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2017; 312(4): H645–H661. https://doi.org/10.1152/ajpheart.00564.2016
38. Cheng Y., Chen Z., Yang S., Liu T., Yin L., Pu Y. et al. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. Sci. Total Environ. 2021; 800: 149584. https://doi.org/10.1016/j.scitotenv.2021.149584
39. Bostan H.B., Rezaee R., Valokala M.G., Tsarouhas K., Golokhvast K., Tsatsakis A.M. et al. Cardiotoxicity of nano-particles. Life Sci. 2016; 165: 91–99. https://doi.org/10.1016/j.lfs.2016.09.017
40. Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013; 2013: 942916. https://doi.org/10.1155/2013/942916
41. Zhou T., Chuang C.-C., Zuo L. Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. BioMed Res. Int. 2015; 2015: 864946. https://doi.org/10.1155/2015/864946
42. Cao Y., Gong Y., Liao W., Luo Y., Wu C., Wang M. et al. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals. 2018; 31(4): 457–476. https://doi.org/10.1007/s10534-018-0113-7
43. Monsé C., Hagemeyer O., Raulf M., Jettkant B., van Kampen V., Kendzia B. et al. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. Fibre Toxicol. 2018; 15(1): 8. https://doi.org/10.1186/s12989-018-0246-4
Review
For citations:
Klinova S.V., Minigalieva I.A., Sutunkova M.P., Nikogosyan K.M. On the mechanisms of cardiotoxic action of various nanoparticles in experimental studies in vivo and in vitro. Russian Journal of Occupational Health and Industrial Ecology. 2024;64(2):121-128. (In Russ.) https://doi.org/10.31089/1026-9428-2024-64-2-121-128. EDN: ccuokb