The role of nanoparticles of industrial aerosols in the formation of occupational bronchopulmonary pathology
https://doi.org/10.31089/1026-9428-2024-64-2-111-120
EDN: dbxtzj
Abstract
The significant prevalence of industrial aerosols with unintentional nanoparticles and the increasing use of engineering nanoparticles in modern production determine the relevance of research on the patterns of interaction with the human bronchopulmonary system. Unintentional nanoparticles are formed during various production processes: melting and welding of metals, combustion, crushing, grinding of minerals, plasma processing of materials. Engineering nanoparticles are released into the air of the work area during their production or use in any technological processes.
The respiratory system, as a barrier organ, is most vulnerable to the effects of adverse environmental factors. At the same time, nanoparticles are the least studied component of industrial aerosols. In order to systematize data on the role of nanoparticles in the development of occupational bronchopulmonary pathology, the authors conducted a literature review.
The size determines the features of the physical, chemical and biological properties of nanoparticles. They have high values of the ratio of surface area to volume, total surface area, which leads to an increase in reactogenicity and penetrating power. The pathogenic properties of nanoparticles depend on the chemical composition, shape, curvature of the surface, structure, charge, mass concentration, total surface area of the particles, and exposure time.
The multidimensionality of hygienic characteristics determines the complexity of hygienic rationing and monitoring of nanoparticles. To date, safe exposure levels have not been established. When interacting with cells of the respiratory tract, nanoparticles induce the following cellular and molecular mechanisms: oxidative stress, inflammation, violation of the epithelial barrier, autophagy and dysfunction of lysosomes, stress of the endoplasmic reticulum, apoptosis, senescence, fibrosis, endothelial dysfunction, DNA damage. This leads to the development of interstitial pneumonitis, pulmonary fibrosis and obstructive disorders, and an increase in the activity of allergic inflammation. All these mechanisms are present in the pathogenesis of occupational lung diseases. Under the influence of nanoparticles of various chemical compositions, separate phenotypes of occupational chronic obstructive pulmonary disease are formed. There is a lack of epidemiological studies of the possible etiological role of nanoparticles. Nanoparticles of industrial aerosols are a significant factor in the development of occupational diseases of the bronchopulmonary system and have a significant impact on the formation
of phenotypes.
Contribution:
Shpagina L.A. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Zenkova M.A. — the concept and design of the review, collection, analysis and interpretation of data (literary sources);
Saprykin A.I.— the concept and design of the review, collection, analysis and interpretation of data (literary sources);
Logashenko E.B. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Shpagin I.S. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Kotova O.S. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Tsygankova A.R.— collection, analysis and interpretation of data (literary sources);
Kuznetsova G.V.— collection, analysis and interpretation of data (literary sources);
Anikina E.V. — the concept and design of the review, collection, analysis and interpretation of data (literary sources), writing the text;
Kamneva N.V.— collection, analysis and interpretation of data (literary sources);
Surovenko T.N. — writing the text
Funding. The research was carried out at the expense of a grant from the Russian Science Foundation (project No. 19-74-30011).
Conflict of interests. The author declares no conflict of interests.
Received: 23.01.2024 / Accepted: 15.02.2024 / Published: 15.03.2024
About the Authors
Lyubov A. ShpaginaRussian Federation
The Head of the Department of Hospital Therapy and Medical Rehabilitation, Novosibirsk State Medical University, Dr. of Sci. (Med.)., Professor
e-mail: lashpagina@gmail.com
Marina A. Zenkova
Russian Federation
Anatoly I. Saprykin
Russian Federation
Evgeniya B. Logashenko
Russian Federation
Ilya S. Shpagin
Russian Federation
Olga S. Kotova
Russian Federation
Alfiya R. Tsygankova
Russian Federation
Galina V. Kuznetsova
Russian Federation
Ekaterina V. Anikina
Russian Federation
Natalya V. Kamneva
Russian Federation
Tatyana N. Surovenko
Russian Federation
References
1. Li Y., Duan J., Chai X., Yang M., Wang J., Chen R. et al. Microarray-assisted size-effect study of amorphous silica nanoparticles on human bronchial epithelial cells. Nanoscale. 2019; 11(47): 22907–22923. https://doi.org/10.1039/c9nr07350g
2. Fatkhutdinova L.M., Khaliullin T.O., Zalyalov R.R., Tkachev A.G., Birch M.E., Shvedova A.A. Assessment of Airborn Multiwalled Carbon Nanotubes in a Manufactoring Environment. Nanotechnol Russ. 2016; 11(1): 85–90 (in Russian). https://doi.org/10.1134/S1995078016010055
3. Soares E.V., Soares H.M.V.M. Harmful effects of metal(loid) oxide nanoparticles. Appl. Microbiol. Biotechnol. 2021; 105(4): 1379–1394. https://doi.org/10.1007/s00253-021-11124-1
4. Setyawati M.I., Singh D., Krishnan S.P.R., Huang X., Wang M., Jia S., et al. Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environ Sci Technol. 2020; 54(4): 2389–2400. https://doi.org/10.1021/acs.est.9b06984
5. Berger F., Bernatíková Š., Kocůrková L., Přichystalová R., Schreiberová L. Occupational exposure to nanoparticles originating from welding — case studies from the Czech Republic. Med Pr. 2021; 72(3): 219–230. https://doi.org/10.13075/mp.5893.01058
6. Lutsenko L.A., Rakitskiy V.N., Il’nitskaya A.V., Egorova A.M., Gvozdeva L.L. Features of nano aerosols action and safety measures. Med. truda i prom. ekol. 2016; (3): 6–11 (in Russian).
7. Shayakhmetov S.F., Rukavishnikov V.S., Lisetskaya L.G., Merinov A.V. Characteristics of generated aerosol suspensions-complexes at traditional and modernized aluminum electrolysis technologies. Med. truda i prom. ekol. 2022; 62(7): 452–458 (in Russian). https://doi.org/10.31089/1026-9428-2022-62-7-452-458
8. Huang Y., Li P., Zhao R., Zhao L., Liu J., Peng S., Fu X., Wang X., Luo R., Wang R., Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother. 2022; 151: 113053. https://doi.org/10.1016/j.biopha.2022.113053
9. Duan H., Liu Y., Gao Z., Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 2021; 11(1): 55–70. https://doi.org/10.1016/j.apsb.2020.09.016
10. Darwish M.K.M., El-Enin A.S.M.A., Mohammed K.H.A. Optimized Nanoparticles for Enhanced Oral Bioavailability of a Poorly Soluble Drug: Solid Lipid Nanoparticles Versus Nanostructured Lipid Carriers. Pharm Nanotechnol. 2022; 10(1): 69–87. https://doi.org/10.2174/2211738510666220210110003
11. Xu Y., Li H., Li X., Liu W. What happens when nanoparticles encounter bacterial antibiotic resistance? Sci Total Environ. 2023; 876: 162856. https://doi.org/10.1016/j.scitotenv.2023.162856
12. Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021; 22(13): 7202. https://doi.org/10.3390/ijms22137202
13. Wu N., Gao H., Wang X., Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng. 2023; 9(6): 2970–2990. https://doi.org/10.1021/acsbiomaterials.2c00722
14. Afroz T., Hiraku Y., Ma N., Ahmed S., Oikawa S., Kawanishi S. et al. Nitrative DNA damage in cultured macrophages exposed to indium oxide. J Occup Health. 2018; 60(2): 148–155. https://doi.org/10.1539/joh.17-0146-OA
15. Murugadoss S., Lison D, Godderis L., Van Den Brule S., Mast J., Brassinne F. et al. Toxicology of silica nanoparticles: an update. Arc.h Toxicol. 2017; 91(9): 2967–3010. https://doi.org/10.1007/s00204-017-1993-y
16. Inoue M., Sakamoto K., Suzuki A., Nakai S., Ando A., Shiraki Y. et al. Size and surface modification of silica nanoparticles affect the severity of lung toxicity by modulating endosomal ROS generation in macrophages. Part Fibre Toxicol. 2021; 18(1): 21. https://doi.org/10.1186/s12989-021-00415-0
17. Velichkovskij B.T. Molecular and cellular basis of ecological pulmonology. Pul’monologiya. 2000; (3): 10–18 (in Russian).
18. Shpagina L.A., Artamonova V.G., Fishman B.B., Panacheva L.A., Mazitova N.N., Pljuhin A.E. et al. Pneumoconiosis. In: Izmerov N.F., Chuchalin A.G. (ed) Occupational respiratory diseases. National guidelines. M.: GEOTAR-Media; 2015: 363–487 (in Russian).
19. Debia M., Carpentier M., L’Espérance G. Characterization of Occupational Exposures to Engineered Nanoparticles During the Finishing Process of a Hardwood Floor Manufacturing Plant. Ann Work Expo Health. 2021; 65(7): 868–873. https://doi.org/10.1093/annweh/wxab003
20. Gonzalez-Pech N.I., Stebounova L.V., Ustunol I.B., Park J.H., Renee Anthony T., Peters T.M. et al. Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J. Occup. Environ. Hyg. 2019; 16(6): 387–399. https://doi.org/10.1080/15459624.2018.1559925
21. Zenkova M.A., Saprykin A.I., Logashenko E.B., Shpagin I.S., Kotova O.S., Tsygankova A.R. et al. Chronic obstructive pulmonary disease due to aerosols containing nanoparticles: inflammation and phenotype features. Med. truda i prom. ekol. 2021; 61(8): 488–496 (in Russian). https://doi.org/10.31089/1026-9428-2021-61-8-488-496
22. Grossgarten M., Holzlechner M., Vennemann A., Balbekova A., Wieland K., Sperling M. et al. Phosphonate coating of SiO2 nanoparticles abrogates inflammatory effects and local changes of the lipid composition in the rat lung: a complementary bioimaging study. Part Fibre Toxicol. 2018; 15(1): 31. https://doi.org/10.1186/s12989-018-0267-z
23. Wang Z., Wang C., Liu S., He W., Wang L., Gan J. et al. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS Nano. 2017; 11(2): 1659–1672. https://doi.org/10.1021/acsnano.6b07461
24. Lag M., Skuland T., Godymchuk A., Nguyen T.H.T., Pham H.L.T., Refsnes M. Silica Nanoparticle-induced Cytokine Responses in BEAS-2B and HBEC3-KT Cells: Significance of Particle Size and Signalling Pathways in Different Lung Cell Cultures. Basic Clin Pharmacol Toxicol. 2018; 122(6): 620–632. https://doi.org/10.1111/bcpt.12963
25. Zhou F., Liao F., Chen L., Liu Y., Wang W., Feng S. The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environ Sci Pollut Res Int. 2019; 26(2): 1911–1920. https://doi.org/10.1007/s11356-018-3695-2
26. Hsiao T.C., Han C.L., Yang T.T., Lee Y.L., Shen Y.F., Jheng Y.T., et al. Importance of surface charge of soot nanoparticles in determining inhalation toxicity in mice. Environ. Sci. Pollut. Res. Int. 2023; 30(7): 18985–18997. https://doi.org/10.1007/s11356-022-23444-4
27. Refsnes M., Skuland T., Lilleaas E., Ovrevik J., Lag M. Concentration-dependent ROS in human lung epithelial cells. Basic Clin. Pharmacol. Toxicol. 2019; 125(3): 304–314. https://doi.org/10.1111/bcpt.13221
28. Wheeler R.M., Lower S.K. A meta-analysis framework to assess the role of units in describing nanoparticle toxicity. NanoImpact. 2021; 21: 100277. https://doi.org/10.1016/j.impact.2020.100277
29. Du Z., Chen S., Cui G., Yang Y., Zhang E., Wang Q. et al. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int. J. Mol. Med. 2019; 43(3): 1229–1240. https://doi.org/10.3892/ijmm.2018.4045
30. Wei W., Yan Z., Liu X., Qin Z., Tao X., Zhu X., et al Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environ. Sci. Technol. 2022; 56(12): 8319–8325. https://doi.org/10.1021/acs.est.1c07562
31. Minigalieva I.A., Ryabova Y.V., Shelomencev I.G., Amromin L.A., Minigalieva R.F., Sutunkova Y.M., et al. Analysis of Experimental Data on Changes in Various Structures and Functions of the Rat Brain following Intranasal Administration of Fe2O3 Nanoparticles. Int. J. Mol. Sci. 2023; 24(4): 3572. https://doi.org/10.3390/ijms24043572
32. Li D., Morishita M., Wagner J.G., Fatouraie M., Wooldridge M., Eagle W.E., et al. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part Fibre Toxicol. 2016; 13(1): 45. https://doi.org/10.1186/s12989-016-0156-2
33. Wolfram J., Zhu M., Yang Y., Shen J., Gentile E., Paolino D. et al. Safety of Nanoparticles in Medicine. Curr Drug Targets. 2015; 16(14): 1671–81. https://doi.org/10.2174/1389450115666140804124808
34. Buchman J.T., Hudson-Smith N.V., Landy K.M., Haynes C.L. Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. Acc. Chem. Res. 2019; 52(6): 1632–1642. https://doi.org/10.1021/acs.accounts.9b00053
35. Sutunkova M.P., Makeyev O.G., Privalova L.I., Minigaliyeva I.A., Gurvich V.B., Solov’yova S.N. et al. Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors cоmbination. Med. truda i prom. ekol. 2018; (11): 10–16 (in Russian). https://doi.org/10.31089/1026-9428-2018-11-10-16
36. Guo C., Wang J., Yang M., Li Y., Cui S., Zhou X. et al. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology. 2017; 11(9–10): 1176–1194. https://doi.org/10.1080/17435390.2017.1403658
37. Shvedova A.A., Yanamala N., Kisin E.R., Khailullin T.O., Birch M.E., Fatkhutdinova L.M. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE. 2016; 11(3): e0150628. https://doi.org/10.1371/journal.pone.0150628
38. IARC monograph, 2017; Vol. 111. https://publications.iarc.fr/552
39. Wang M., Li J., Dong S., Cai X., Simaiti A., Yang X. et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part Fibre Toxicol. 2020; 17(1): 23. https://doi.org/10.1186/s12989-020-00353-3
40. Gliga A.R., Di Bucchianico S., Lindvall J., Fadeel B, Karlsson H.L. RNA-sequencing reveals long-term effects of silver nanoparticles on human lung cells. Sci Rep. 2018; 8(1): 6668. https://doi.org/10.1038/s41598-018-25085-5
41. Sutunkova M.P. Тhe experimental assessment of NiO nanoparticles toxicity in inxalation exposure. Med. truda i prom. ekol. 2019; (2): 86–91 (in Russian). https://doi.org/10.31089/1026-9428-2019-2-86-91
42. Petrache Voicu S.N., Dinu D., Sima C., Hermenean A., Ardelean A., Codrici E. et al. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line. Int J Mol Sci. 2015; 16(12): 29398–416. https://doi.org/10.3390/ijms161226171
43. Yu H.H., Chen Y.C., Su H.P., Chen L., Chen H.H., Lin K.A. et al. Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles. Sci Total Environ. 2023; 855: 158885. https://doi.org/10.1016/j.scitotenv.2022.158885
44. Zhao L., Zhu Y., Chen Z., Xu H., Zhou J., Tang S. et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 2018; 12(2): 169–184. https://doi.org/10.1080/17435390.2018.1425502
45. Mo Y., Jiang M., Zhang Y., Wan R., Li J., Zhong C.J. et al. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J. Nanobiotechnology. 2019; 17(1): 2. https://doi.org/10.1186/s12951-018-0436-0
46. Schremmer I., Brik A., Weber D.G., Rosenkranz N., Rostek A., Loza K. et al. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles. Toxicol Lett. 2016; 263: 68–75. https://doi.org/10.1016/j.toxlet.2016.08.014
47. Guo C., Yang M., Jing L., Wang J., Yu Y., Li Y., et al. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. Int. J. Nanomedicine. 2016; 11: 5257–5276. https://doi.org/10.2147/IJN.S112030
48. Hsu S.Y., Morris R., Cheng F. Signaling Pathways Regulated by Silica Nanoparticles. Molecules. 2021; 26(5): 1398. https://doi.org/10.3390/molecules26051398
49. Ko J.W., Shin N.R., Je-Oh L., Jung T.Y., Moon C., Kim T.W. et al. Silica dioxide nanoparticles aggravate airway inflammation in an asthmatic mouse model via NLRP3 inflammasome activation. Regul Toxicol Pharmacol. 2020; 112: 104618. https://doi.org/10.1016/j.yrtph.2020.104618
50. Khaliullin T.O., Yanamala N., Newman M.S., Kisin E.R., Fatkhutdinova L.M., Shvedova A.A. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol. Appl. Pharmacol. 2020; 390: 114898. https://doi.org/10.1016/j.taap.2020.114898
51. Yukina G.Y., Polovnikov I.V., Sukhorukova E.G., Zhuravskii S.G., Galagudza M.M. Morphological Analysis of the Respiratory Tract of Rats after Parenteral Administration of Silicon Dioxide Nanoparticles. Bull. Exp. Biol. Med. 2020; 170(1): 93–97. https://doi.org/10.1007/s10517-020-05011-4
52. Jeong M.J., Jeon S., Yu H.S., Cho W.S., Lee S., Kang D. et al. Exposure to Nickel Oxide Nanoparticles Induces Acute and Chronic Inflammatory Responses in Rat Lungs and Perturbs the Lung Microbiome. Int. J. Environ. Res Public Health. 2022; 19(1): 522. https://doi.org/10.3390/ijerph19010522
53. Meldrum K., Robertson S.B., Romer I., Marczylo T., Dean L.S.N., Rogers A. et al. Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation. Part Fibre Toxicol. 2018; 15(1): 24. https://doi.org/10.1186/s12989-018-0261-5
54. Kroker M., Sydlik U., Autengruber A., Cavelius C., Weighardt H., Kraegeloh A. et al. Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model. Part Fibre Toxicol. 2015; 12: 20. https://doi.org/10.1186/s12989-015-0093-5
55. Liu Y., Wei H., Tang J., Yuan J., Wu M., Yao C. et al. Dysfunction of pulmonary epithelial tight junction induced by silicon dioxide nanoparticles via the ROS/ERK pathway and protein degradation. Chemosphere. 2020; 255: 126954. https://doi.org/10.1016/j.chemosphere.2020.126954
56. Wang W., Zeng C., Feng Y., Zhou F., Liao F., Liu Y. et al. The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway. Environ Pollut. 2018; 233: 218–225. https://doi.org/10.1016/j.envpol.2017.10.053
57. Guo C., Ma R., Liu X., Xia Y., Niu P., Ma J. et al. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. Chemosphere. 2018; 210: 183–192. https://doi.org/10.1016/j.chemosphere.2018.06.170
58. Spannbrucker T., Ale-Agha N., Goy C., Dyballa-Rukes N., Jakobs P., Jander K. et al. Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Exp. Gerontol. 2019; 117: 106-112. https://doi.org/10.1016/j.exger.2018.11.017
59. Zhang Y., Mo Y., Yuan J., Zhang Y., Mo L., Zhang Q. MMP‑3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology. 2021; 15(10): 1380–1402. https://doi.org/10.1080/17435390.2022.2030822
60. Duan J., Yu Y., Yu Y., Li Y., Wang J., Geng W. et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014; 9: 5131–41. https://doi.org/10.2147/IJN.S71074
61. Liu X., Lu B., Fu J., Zhu X., Song E., Song Y. Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells. J Hazard Mater. 2021; 404(Pt B): 124050. https://doi.org/10.1016/j.jhazmat.2020.124050
62. Wierzbicki M., Zawadzka K., Wójcik B., Jaworski S., Strojny B., Ostrowska A. et al. Differences in the Cell Type-Specific Toxicity of Diamond Nanoparticles to Endothelial Cells Depending on the Exposure of the Cells to Nanoparticles. Int J Nanomedicine. 2023; 18: 2821–2838. https://doi.org/10.2147/IJN.S411424
63. Guo C., Zhao X., Ma R., Zhu L., Chen Y., Yang Z. et al. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. Sci. Total. Environ. 2023; 881: 163430. https://doi.org/10.1016/j.scitotenv.2023.163430
64. Fireman Klein E., Adir Y., Krencel A., Peri R., Vasserman B., Fireman E. et al. Ultrafine particles in airways: a novel marker of COPD exacerbation risk and inflammatory status. Int. J. Chron. Obstruct. Pulmon Dis. 2019; 14: 557–564. https://doi.org/10.2147/COPD.S187560
65. Pelclova D., Zdimal V., Komarc M., Vlckova S., Fenclova Z., Ondracek J. et al. Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. Nanomaterials (Basel). 2018; 8(9): 731. https://doi.org/10.3390/nano8090731
66. Shpagina L.A., Zenkova M.A., Shpagin I.S., Logashenko E.B., Anikina E.V., Kotova O.S. et al. Cellular and molecular markers of chronic obstructive pulmonary disease in conditions of exposure of industrial aerosols containing unintentional nanoparticles of metals or silica. Sovremennye problemy nauki i obrazovanija. 2023; 6. https://science-education.ru/article/view?id=33130 (in Russian). https://doi.org/10.17513/spno.33130
Review
For citations:
Shpagina L.A., Zenkova M.A., Saprykin A.I., Logashenko E.B., Shpagin I.S., Kotova O.S., Tsygankova A.R., Kuznetsova G.V., Anikina E.V., Kamneva N.V., Surovenko T.N. The role of nanoparticles of industrial aerosols in the formation of occupational bronchopulmonary pathology. Russian Journal of Occupational Health and Industrial Ecology. 2024;64(2):111-120. (In Russ.) https://doi.org/10.31089/1026-9428-2024-64-2-111-120. EDN: dbxtzj