Preview

Russian Journal of Occupational Health and Industrial Ecology

Advanced search

Silica: occupational risks of health disorders

https://doi.org/10.31089/1026-9428-2023-63-6-386-396

EDN: wpynoy

Abstract

The authors presented an analysis of modern views on the risks of industrial exposure to silica.

We touch upon the study of this problem abroad and in Russia. Researchers describe diseases associated with silica, both in traditional and new spheres of the economy.

In the article, scientists have considered the relationship of exposure to silicon dioxide with the formation of autoimmune, сhronic obstructive pulmonary disease (COPD), kidney pathology, cardiovascular system, etc. The article tells about modern views on the mechanisms of development of pulmonary and extrapulmonary diseases associated with exposure to silicon dioxide. The authors have presented modern approaches to the prevention of multisystem risks associated with silica.

Ethics. The study did not require the conclusion of the Ethics Committee.

Contrubution:
Gorblyansky Yu.Yu. — the concept and design of the study, writing the text;
Shuyakova E.A. — writing the text;
Kontorovich E.P. — writing text, editing;
Ponamareva O.P. — writing of the text, design of the bibliography.

Funding. The study had no funding.

Conflict of interests. The authors declare no conflict of interests.

Received: 08.05.2023 / Accepted: 18.05.2023 / Published: 12.06.2023

About the Authors

Yuri Yu. Gorblyansky
Rostov State Medical University
Russian Federation


Ekaterina A. Shuyakova
Rostov State Medical University
Russian Federation


Elena P. Kontorovich
Rostov State Medical University
Russian Federation

Associate Professor of the Department of Occupational Pathology, Rostov State Medical University, Ministry of Health of Russian Federation, Rostov-on-Don, Cand. of Sci. (Med.).

e-mail: kontorovichep@yandex.ru



Oksana P. Ponamareva
Rostov State Medical University
Russian Federation


References

1. Castranova V., Vallyathan V. Silicosis and coal workers´ pneumoconiosis. Environ Health Perspect. 2000; 108(Suppl 4): 675–684. https://doi.org/10.1289/ehp.00108s4675

2. Liu J.Y., Sayes C.M. A toxicological profile of silica nanoparticles. Toxicol Res (Camb). 2022; 11(4): 565–582. https://doi.org/10.1093/toxres/tfac038

3. Sharma N., Jha S. Amorphous nanosilica induced toxicity inflammation and innate immune responses: A critical review. Toxicology. 2020; 441: 152519. https://doi.org/10.1016/j.tox.2020.152519

4. Napierska D., Thomassen L.C., Lison D., Martens J.A., Hoer P.H. The nanosilica hazard: Another variable entity. Part. Fibre Toxicol. 2010; 7: 39. https://doi.org/10.1186/1743-8977-7-39

5. Hoy R., Jeebhay M., Cavalin C., Chen W., Cohen R., Fireman E. et al. Current global perspectives on silicosis–Convergence of old and newly emergent hazards. Respirology. 2022; 27(6): 387–398. https://doi.org/10.1111/resp.14242

6. Scarselli A., Binazzi A., Marinaccio A. Occupational exposure to crystalline silica: estimating the number of workers potentially at high risk in Italy. Am J Ind Med. 2008; 51(12): 941–949. https://doi.org/10.1002/ajim.20619

7. Da Silva V.M., Benidir M., Montagne P., Pairon J.-C., Lanone S., Andular P. Pulmonary Toxicity of Silica Linked to its Micro-or Nanometric Particle Size and Crystal Structure: A Review. Nanomaterials (Basel). 2022; 12(14): 2392. https://doi.org/10/3390/nano12142392

8. Leso V., Fontana L., Romano R., Gervetti P., Iavicoli I. Artificial stone associated silicosis: a systematic review. Int J Environ Res Public Health. 2019; 16: 568. https://doi.org/10.3390/ijerph16040568

9. Wen С., Wen X., Li R., Su S., Xu H. Silicosis in rhinestone-manufacturing workers in South China. Occup Med (Lond). 2019; 69(7): 475–481. https://doi.org/10.1093/occmed/kqz107

10. Shi P., Xing X., Xi S., Jing H., Yuan J., Fu Z. et al. Trends in global, regional and national incidence of pneumoconiosis caused by different aetiologies: an analysis from the Global Burden of Disease Study 2017. Occup Environ Med. 2020; 77: 407–14. https://doi.org/10.1136/oemed-2019-106321

11. Ehrlich R. Commentary Silica — A Multisystem Hazard. Int J Epidemiol. 2021; 50(4): 1226–1228. https://doi.org/10.1093/ije/dyab020

12. Westerholm P. Silicosis. Observatons on a case register. Scand J Work Environ Health. 1980; Suppl 2: 1–86. https://doi.org/10.5271/sjweh.2639

13. Finkelstein M., Kusiak R., Suranyi G. Mortality among miners receiving workmen´s compensation for silicosis in Ontario: 1940–1975. J Occup Med. 1982; 24(9): 663–667. https://doi.org/10.1097/00043764-198209000-00012

14. Goldsmith D.F., Winn D.M., Shy C.M. Silica, silicosis and lung cancer. Controversy in occupational medicine. New York: Praeger publications; 1986.

15. Poinen-Rughooputh S., Rughooputh M.S., Guo Y., Rong Y., Chen W. Occupational exposure to silica dust and risk of lung cancer: an updated meta-analysis of epidemiological studies. BMC Public Health. 2016; 16(1): 1137. https://doi.org/10.1186/s12889-016-3791-S

16. Sato T., Shimosato T., Klinman D.M. Silicosis and lung cancer: current perspectives. Lung Cancer (Auckl). 2018; 9: 91–101. https://doi.org/10.2147/LCTT.S156376

17. Vlahovich К.Р., Sood A. 2019 Update on Occupational Lung Diseases: A Narrative Review. Pulm Ther. 2021; 7: 75–87. https://doi.org/10.1007/s41030-020-00143-4

18. Kamenova A., Sathyamoorthy T., Bain G., Viola P., Margaritopoulos G.A. Bilateral mediastinal lymphadenopathy with cough and shortness of breath. Breathe. 2022; 18: 220218. https://doi.org/10.1183/20734735.0218-2022

19. Brown T. Silica exposure, smoking, silicosis and lung cancer-complex interactions. Occup Med (Lond). 2009; 59(2): 89–95. https://doi.org/10.1093/occmed/kqn171

20. Chen W., Liu Y., Wang H., Hnizdo E., Sun Y., Su L. et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med. 2012; 9(4): e1001206. https://doi.org/10.1371/journal.pmed.1001206

21. Ndlovu N., Nielson G., Vorajee N., Murray J. 38 Years of autopsy finding in South African mine workers. Am J Ind Med. 2016; 59(4): 307–14. https://doi.org/10.1002/ajim.22574

22. Greenberg M.I., Waksman J., Curtis J. Silicosis: a review. Dis Mon. 2007; 53(8): 394–416. https://doi.org/10.1016/j.disamonth.2007.09.020

23. Zosky G.R., Hoy R.F., Silverstone E.J., Brims F.J., Miles S., Johnson A.R. et al. Coal workers´ pneumoconiosis an Australian perspective. Med J Aust. 2016; 204(11): 414–8. https://doi.org/10.5694/mja16.00357

24. Blackley D.J., Halldin C.N., Laney A.S. Continued increase in prevalence of coal workers´ pneumoconiosis in the United States, 1970-2017. Am. J. Public Health. 2018; 108(9): 1220–1222. https://doi.org/10.2105/AJPH.2018.304517

25. Misra S., Sussell A.L., Wilson S.E., Poplin G.S. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000–2019. Am. J. In. Med. 2023; 66(4): 199–212. https://doi.org/10.1002/ajim.23451

26. Leung C.C., Yu I.T., Chen W. Silicosis. Lancet. 2012; 379(9830): 2008–18. https://doi.org/10.1016/S0140-6736(12)60235-9

27. Cohen R.A., Petsonk E.L., Rose C., Young B., Regier M., Najmuddin A. et al. Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and Silicates. Am J Respir Crit Care Med. 2016; 193(6): 673–80. https://doi.org/10.1164/rccm.201505-1014OC

28. Almberg K.S., Friedman L.S., Rose C.S., Go L.H.T., Cohen R.A. Progression of coal workers´ pneumoconiosis absent further exposure. Occup Environ Med. 2020; 77(11): 748–751. https://doi.org/10.1136/oemed-2020-106466

29. Doney B.C., Blackley D., Hale J.M., Halldin C., Kurth L., Syamlal G. et al. Respirable coal mine dust in underground mines, United States, 1982–2017. Am J Ind Med. 2019; 62(6): 478–485. https://doi.org/10.1002/ajim.22974

30. Shpagina L.A., Panacheva L.A., E.V. Zolotukhina E.V. Issues of ethical regulation of immunobiological therapy of some occupational lung diseases. Permskiy meditsinskiy zhurnal. 2021; 38(3): 131–140. https://doi.org/10.17816/pmj383131-140 (in Russian)

31. Vizel' A.A., Gorblyanskiy Yu.Yu., Il'kovich I.I., Baranova O.P., Petrov D.V. Speranskaya A.A. et al. Fibrosing sarcoidosis: from understanding to treatment perspective. Prakticheskaya pul'monologiya. 2021; 1: 61–73. https://clck.ru/34Z3e7 (accessed: 22.04.2023) (in Russian)

32. Cullinan P., Muñoz X., Suojalehto H., Agius R., Jindal S., Sigsgaard T. et al. Occupational lung diseases: from old and novel exposures to effective preventive strategies l. Lancet Respir Med. 2017; 5(5): 445–455. https://doi.org/10.1016/S2213-2600(16)30424-6

33. Suarthana E., Moons K.G.M., Heederik D., Meijer E. A simple diagnostic model for ruling out pneumoconiosis among construction workers. Occup Environ Med. 2007; 64(9): 595–601. https://doi.org/10.1136/oem.2006.027904

34. Rosmans S., Verbeken E.K., Adams E., Keirsbilck S., Yserbyt J., Wuyts W.A. et al. Granulomatous lung disease in two workers making light bulbs. Am J Ind Med. 2019; 62(10): 908–913. https://doi.org/10.1002/ajim.23030

35. Hoy R.F., Baird T., Hammerschlag G., Hart D., Johnson A.R., King Р. et al. Artificial stone-associated silicosis a rapidly emerging occupational lung disease. Occup Environ Med. 2018; 75(1): 3–5. https://doi.org/10.1136/oemed02017-1044283

36. Hall S., Stacey P., Pengelly I., Stagg S., Saunders J., Hambling S. Characterizing and Comparing Emissions of Dust, Respirable Crystalline Silica, and Volatile Organic Compounds from Natural and Artificial Stones. Ann Work Expo Health. 2022; 66(2): 139–149. https://doi.org/.1093/annweh/wxab055

37. Murgia N., Muzi G., Dell'Omo M., Sallese D., Ciccotosto C., Rossi M. et al. An old threat in a new setting: High prevalence of silicosis among jewelry workers. Am J Ind Med. 2007; 50(8): 577–583. https://doi.org/10.1002/ajim.20490

38. Girdler-Brown B.V., White N.W., Ehrlich R.I., Churchyard G.J. The burden of silicosis, pulmonary tuberculosis and COPD among former Basotho goldminers. Am J Ind Med. 2008; 51(9): 640–647. https://doi.org/10.1002/ajim.20602

39. Nelson G., Murray J. Silicosis at autopsy in platinum mine workers. Occup Med (Lond). 2013; 63(3): 196–202. https://doi.org/10.1093/occmed/kqs211

40. De Matteis S., Heederik D., Burdorf A., Colosio C., Cullinan P., Henneberger P.K. et al. Current and new challenges in occupational lung diseases. Eur Respir Rev. 2017; 26(146): 170080. https://doi.org/10.1183/16000617.0080-2017

41. Sahbaz S., Inönü H., Ocal S., Yilmaz A., Pazarli C., Yeğinsu A. et al. Denim sandblasting and silicosis two new subsequent cases in Turkey. Tuberk Toraks. 2007; 55(1): 87–91. PMID: 17401800

42. Taskar V.S., Coulta D.B. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006; 3(4): 293–298. https://doi.org/10.1513/pats.200512-131TK

43. Steenland K. One agent, many diseases: exposure response data and comparative risks of different outcomes following silica exposure. Am J Ind Med. 2005; 48(1): 16–23. https://doi.org/10.1002/ajim.20181

44. Vihlborg P., Bryngelsson I.L., Andersson L., Graff P. Risk of sarcoidosis and seropositive rheumatoid arthritis from occupational silica exposure in Swedish iron foundries: a retrospective cohort study. BMJ Open. 2017; 7(7): e016839. https://doi.org/10.1136/ bmjopen-2017-016839

45. Parks C.G., Miller F.W., Pollard K.M., Selmi C., Germolec D., Joyce K. et al. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci. 2014; 15(8): 14269–97. https://doi.org/10.3390/ijms150814269

46. Patel S., Morrisroe K., Proudman S., Hansen D., Sahhar J., Sim M.R. et al. Occupational silica exposure in an Australian systemic sclerosis cohort. Rheumatology (Oxford). 2020; 59(12): 3900–5. https://doi.org/10.1093/rheumatology/keaa446

47. Pfau J.C., Barbour C., Black B., Serve K.M., Fritzier M.J. Analysis of autoantibody profiles in two asbestiform fiber exposure cohorts. J Toxicol Environ Health A. 2018; 81(19): 1015–27. https://doi.org/10.1080/15287394.2018.1512432

48. Boudigaard S.H., Schlünssen V., Vestergaard J.M., Sendergaard K.S., Torén K., Peters S. et al. Occupational exposure to respirable crystalline silica and risk of autoimmune rheumatic diseases: a nationwide cohort study. Int J Epidemiol. 2021; 50(4): 1213–1226. https://doi.org/10.1093/ije/dyaa287

49. Glazer C.S., Newman L.S. Occupational interstitial lung disease. Clin Chest Med. 2004; 25(3): 467–478. https://doi.org/10.1016/j.ccm.2004.04.004

50. Koo J.W., Myong J.P., Yoon H.K., Rhee C.K., Kim Y., Kim J.S. et al. Occupational exposure and idiopathic pulmonary fibrosis: a multicenter case-control study in Korea. Int J Tuberc Lung Dis. 2017; 21(1). 107–112. https://doi.org/10.5588/ijtld.16.0167

51. Napierska D., Thomassen L.C.J., Lison D., Martens J.A., Hoet P.H, The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010; 7(1): 39. https://doi.org/10.1186/1743-8977-7-39

52. Barnes I., Goh H., Leong N.S.L., Hoy T.L. Silica-associated lung disease: An old-world exposure in modern industries. Respirology. 2019; 24(12): 1165–1175. https://doi.org/10.1111/resp.13695

53. Blackley D.J., Halldin C.N., Wang M.L., Laney A.S. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia. Occup Environ Med. 2014; 71(10): 690–4. https://doi.org/10.1136/oemed-2014-102224

54. Roney N., Faroon M. et al. Toxicological Profile for Silica. Anlanta, GA: U.S. Department of Health and Human Services, Public Health Service: Agency for Toxic Substances and Disease Registry (ATSDR), 2019. https://stacks.cdc.gov/view/cdc/81729/cdc_81729_DS1.pdf

55. Pollard K.M. Silica silicosis and autoimmunity. Front Immunol. 2016; 7: 97. https://doi.org/10.3389/fimmu.2016.00097

56. Garanina E.E., Martynova E.V., Ivanov K.Ya., Rizvanov A.A., Khaybullina S.F. Inflammasomes: role in the pathogenesis of diseases and therapeutic potential. Uchenye zapiski Kazanskogo universiteta. Seriya estestvennye nauki. 2020; 162(1): 80–111. https://doi.org/10.26907/2542-064x.2020.1.80-111 (in Russian).

57. Benmerzoug S., Rose S., Bounab B., Gosset D., Duneau L., Chenuet P. et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018; 9(1): 5226. https://doi.org/10.1038/s41467-018-07425-1

58. Lescoat A., Ballerie A., Lelong M., Augagneur Y., Morzadec C., Jouneau S. et al. Crystalline silica impairs efferocytosis abilities of human and mouse macrophages: implication for silica-associated systemic sclerosis. Front Immunol. 2020; 11: 219. https://doi.org/10.3389/fimmu.2020.00219

59. Velichkovskiy B.T., Pavlovskaya N.A., Piktushanskaya I.N., Gorblyanskiy Yu.Yu. Methods for determining the effect of fibrogenic dust on the body in the experiment and clinic. Moskva; 2003. ISBN 5-7509-0696-5 (in Russian)

60. Morse C., Tabib T., Sembrat J., Buschur K., Bittar H.T., Valenzi E. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Resp J. 2019; 54(2): 1802441. https://doi.org/10.1183/13993003.02441-2018

61. Nau G.J., Guilfoile P., Chupp G.L., Berman J.S., Kim S.J., Komfeld H. et al. A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc Natl Acad Sci USA. 1997; 94(12): 6414–6419. https://doi.org/10.1073/pnas.94.12.6414

62. Beamer C.A., Migliaccio C.T., Jessop F., Trapkus M., Yuan D., Holian A. Innate immune processes are sufficient for driving silicosis in mice. J Leukos Biol. 2010; 88(3): 547–57. https://doi.org/10.1189/jlb.0210108

63. Sai L., Qi X., Yu G., Zhang J., Zheng Y., Jia Q., Peng C. Dynamic assessing silica particle-induced pulmonary fibrosis and associated regulation of long non-coding RNA expression in Wistar rats. Genes Environ. 2021; 43(1): 23. https://doi.org/10.1186/s41021-021-00193-3

64. Thakur S.A., Beamer C.A., Migliaccio C.T., Holian A. Critical role of MARCO in crystalline silica-induced pulmonary inflammation. Toxicol Sci. 2009; 108(2): 462–471. https://doi.org/10.1093/toxsci/kfp011

65. Bodo M., Baroni T., Bellocchio S., Calvitti M., Lilli C., D´Alessandro A. et al. Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor. Mol. Med. 2001; 7(2): 83–92. https://doi.org/10.1007/BF03401942

66. Vanka K.S., Shukla S., Gomez H.M., James C., Palanisami T., Williams K. et al.. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev. 2022; 31(165): 210250. https://doi.org/10.1183/16000617.0250-2021

67. Yin H., Xie Y., Gu P., Li W., Zhang Y., Yao Y. et al. The emerging role of epigenetic regulation in the progression of silicosis. Clin Epigenetics. 2022; 14(1): 169. https://doi.org/10.1186/s13148-022-01391-8

68. Valdés-Rives S.A., González-Arenas A. Autotaxin-lysophosphatidic acid: from inflammation to cancer development. Mediators Inflamm. 2017; 2017: 9173090. https://doi.org/10.1155/2017/9173090

69. Lee S., Hayashi H., Maeda M., Chen Y., Matsuzaki H., Takei-Kumagai N. et al. Environmental factors producing autoimmune dysregulation-chronic activation of T cells caused by silica exposure. Immunobiology. 2012; 217(7): 743–748. https://doi.org/10.1016/j.imbio.2011.12.009

70. Ophir N., Shai A.B., Korenstein R., Kramer M.R., Fireman E. Functional, inflammatory and interstitial impairment due to artificial stone dust ultrafine particles exposure. Occup Environ Med. 2019; 76(12): 875–879. https://doi.org/10.1136/oemed-2019-105711

71. Bates M.A., Brandenberger C., Langohr I., Kumagai K., Harkema J.R., Holian A. et al. Silica triggers inflammation and ectopic lymphoid neogenesis in the lungs in parallel with accelerated onset of systemic autoimmunity and glomerulonephritis in the lupus-prone NZBWF1 mouse. PLoS One. 2015; 10(5): e0125481. https://doi.org/10.1371/journal.pone.0125481

72. Rice F.L., Park B., Stayner L.T. Silica, lung cancer, and respiratory disease quantitative risk. Washington, D.C.: National Institute for Occupational Safety and Health; 2011. https://stacks.cdc.gov/view/cdc/5914

73. Litow F.K., Petsonk E.L., Bohnker B.K., Brodkin C.A., Cowl C.T., Guidotti T.L. et al. Occupational Interstitial Lung Diseases. J Occup Environ Med. 2015; 57(11): 1250–1254. https://doi.org/10.1097/JOM.0000000000000608

74. Lacasse Y., Martin S., Gagné D., Lakhal L. Dose-response meta-analysis of silica and lung cancer. Cancer Causes Control. 2009; 20(6): 925–933. https://doi.org/10.1007/s10552-009-9296-0

75. Johanson G., Tinnerberg H. Binding occupational exposure limits for carcinogens in the EU — good or bad? Scand J Work Environ Health. 2019; 45(3): 213–214. https://doi.org/10.5271/sjweh.3825


Review

For citations:


Gorblyansky Yu.Yu., Shuyakova E.A., Kontorovich E.P., Ponamareva O.P. Silica: occupational risks of health disorders. Russian Journal of Occupational Health and Industrial Ecology. 2023;63(6):386-396. (In Russ.) https://doi.org/10.31089/1026-9428-2023-63-6-386-396. EDN: wpynoy

Views: 418


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1026-9428 (Print)
ISSN 2618-8945 (Online)