The risk of modification of the immune response of the body in agricultural workers from the effects of a biological factor
https://doi.org/10.31089/1026-9428-2022-62-12-821-827
Abstract
The issues of timely identification of workers in need of in-depth examination remain relevant and priority; substantiation of criteria for the formation of risk groups, taking into account the assessment of early nonspecific reactions of the body in order to timely ensure rational schemes for the organization of therapeutic and recreational activities.
The analysis of the available literature data on determining the role of the immune system in the development of pathology in workers under conditions of industrial microbiological risk seems relevant.
We have carried out a systematic search and analysis of modern domestic and foreign literature on the designated topic.
Hygienic studies indicate that respiratory dusts, chemicals, conditionally pathogenic saprophytic microorganisms prevail as part of the complex of working environment factors.
As a result of adsorption on dust particles, microorganisms are able to trigger the development of pathological processes, followed by the release of inflammatory mediators. Other interrelated and interdependent molecular mechanisms also take part in the processes of formation of inflammation of the respiratory tract. Maintaining the balance of the levels of pro- and anti-inflammatory regulatory proteins — cytokines is the basis for maintaining an adequate balance and the formation of anti-infectious immunity.
Epithelial cells are the main organ capable of performing the functions of a barrier to prevent the spread of an infectious agent to the lower respiratory tract.
The analysis of scientific literature indicates a significant contribution of microbial contamination of the air of the working area by saprophytic microorganisms to the development of immuno-mediated general somatic, production-related and occupational morbidity. There is not enough work on a clear disclosure of the patterns of immune response, the stage-by-stage indicators of endogenous protection mechanisms, which make it possible to justify timely diagnostic measures and high-quality medical supervision of employees.
Contribution:
Masyagutova L.M. — the concept and design of the study, writing the text;
Bakirov A.B. — the concept and design of the study;
Gizatullina L.G. — writing the text;
Abdrakhmanova E.R. — selection and translation of literature;
Rafikova L.A. — selection and translation of literature;
Kabirova E.F. — selection and translation of literature.
All authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Funding. The study had no funding.
Conflict of interests. The authors declare no conflict of interests.
Received: 14.11.2022 / Accepted: 01.12.2022 / Published: 23.12.2022
About the Authors
Lyaylya M. MasyagutovaRussian Federation
The Chief Researcher, Head of the Department of Occupational Health, Ufa Research Institute of Occupational Health and Human Ecology, Dr. of Sci. (Med.).
e-mail: kdl.ufa@rambler.ru
Akhat B. Bakirov
Russian Federation
Liliya G. Gizatullina
Russian Federation
Elena R. Abdrakhmanova
Russian Federation
Linara A. Rafikova
Russian Federation
Elvira F. Kabirova
Russian Federation
References
1. Popova A.Yu. Problems and trends of occupational morbidity in agricultural workers of the Russian Federation. Zdorov’e naseleniya i sreda obitaniya. 2016; 9: 4–9.
2. Bezrukova G.A., Danilov A.N., Spirin V.F., Novikova T.A. Modern trends in occupational morbidity of agricultural workers. Problemy sotsial’noy gigieny, zdravookhraneniya i istorii meditsiny. 2019; 27(6): 1003–7. https://doi.org/10.32687/0869-866X-2019-27-6-1003-1007
3. Onishchenko G.G., Rakitskiy V.N., Sinoda V.A., Trukhina G.M., Lutsenko L.A., Sukhova A.V. Preserving the health of workers in the implementation of health and resource-saving technology. Zdravookhranenie Rossiyskoy Federatsii. 2015; 6(59): 4–8.
4. Popova A.Yu., Gurvich V.B., Kuz’min S.V., Mishina A.L., Yarushin S.V. Modern issues of health risk assessment and management. Gigiena i sanitariya. 2017; 12(96): 1125–9. https://doi.org/10.18821/0016-9900-2017-96-12-1125-1129
5. Bukhtiyarov I.V., Kuz’mina L.P., Golovkova N.P., Chebotarev A.G., Leskina L.M., Khelkovskiy-Sergeev N.A., Kotova N.I. Substantiation of the platform of standards based on the assessment of the risk of health problems for employees of enterprises in leading sectors of the economy. Med. truda i prom. ekol. 2021; 61(3): 155–60.
6. Danilov A.N., Bezrukova G.A., Spirin V.F. Modern aspects of occupational pathological assistance to agricultural workers. Zdorov’e naseleniya i sreda obitaniya. 2019; 6: 19–26. https://doi.org/10.35627/2219-5238/2019-315-6-19-25
7. Bushueva T.V., Roslaya N.A., Varaksin A.N., Gagarina M.S., Shirokova O.V., Shastin A.S., Artemenko E.P., Shalaumova Yu.V., Vedernikova M.S., Labzova A.K. Immunological screening as a stage in the formation of an immunocompromised professional cohort for vaccination against pneumococcal infection. Zdorov’e naseleniya i sreda obitaniya. 2021; 6(339): 78–83. https://doi.org/10.35627/2219-5238/2021-339-6-78-83
8. Izmerov N.F., Bukhtiyarov I.V., Prokopenko L.V., Shigan E.E. Implementation of the WHO global action plan for the health of workers in the Russian Federation. Med. truda i prom. ekol. 2015; 9: 4–10.
9. Masyagutova L.M., Bakirov A.B., Simonova N.I., Gizatullina L.G. Laboratory substantiation of the stages and volume of preventive measures when working in conditions of microbial air pollution in the working area. Klinicheskaya laboratornaya diagnostika. 2018; 9: 584–7. https://doi.org/10.18821/0869-2084-2018-63-9-584-587
10. Pornpimol Kongtip, Noppanun Nankongnab, Redeerat ahaboonpeeti, Sasivimol Bootsikeaw et al. Differences among Thai Agricultural Workers’ Health, Working Conditions, and Pesticide Use by Farm. Type Work Expo Health. 2018; 62(2): 167–81. https://doi.org/10.1093/annweh/wxx099
11. Grzywacz J.G., Alterman T., Gabbard S. et al. Job control, psychological demand, and farmworker health: Evidence from the national agricultural workers survey. J. Occup. Environ. Med. 2014; 56(1): 66–71. https://doi.org/10.1097/JOM.0000000000000025
12. Cherry N., Burstyn I., Beach J., Senthilselvan A. Mental health in Alberta grain farmers using pesticides over many years. Occup Med (Lond). 2012; 62(6): 400–6. https://doi.org/10.1093/occmed/kqs136
13. Kirychuk S.P., Reynolds S.J., Koehncke N.K. et al. Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations. Ann. Occup. Hyg. 2010; 54: 824–32. https://doi.org/10.1093/annhyg/meq047
14. Landsbergis P.A., Grzywacz J.G., LaMontagne A.D. Work organization, job insecurity, and occupational health disparities. Am J Ind Med. 2014; 57(5): 495–515. https://doi.org/10.1002/ajim.22126
15. Eastman C., Schenker M.B., Mitchell D.C., Tancredi D.J., Bennett D.H., Mitloehner F.M. Acute pulmonary function change associated with work on large dairies in California. J Occup Environ Med. 2013; 55(1): 74–9. https://doi.org/10.1097/JOM.0b013e318270d6e4
16. Tual S., Lemarchand C., Boulanger M., Dalphin J.C., Rachet B., et al. Exposure to Farm Animals and Risk of Lung Cancer in the AGRICAN Cohort. Am J Epidemiol. 2017; 186(4): 463–72. https://doi.org/10.1093/aje/kwx125
17. Lamprecht B., Schirnhofer L., Kaiser B., Studnicka M., Buist A.S. Farming and the prevalence of non-reversible airways obstruction: results from a population-based study. Am J Ind Med. 2007; 50(6): 421–6. https://doi.org/10.1002/ajim.20470
18. Babanov S.A., Baykova A.G. Features of the immunological profile in various phenotypes of occupational bronchial asthma. Terapevt. 2021; 7: 19–26. https://doi.org/10.33920/MED-12-2107-03
19. Vasil’eva O.S., Kuz’mina L.P., Chernyak A.V., Kravchenko N.Yu., Kolyaskina M.M. Professional factors and the role of individual susceptibility to the development and course of bronchopulmonary diseases. Pul’monologiya. 2021; 31(4): 463–8. https://doi.org/10.18093/0869-0189-2021-31-4-463-468
20. Peeters P.M., Wouters E.F., Reynaert N.L. Immune homeostasis in epithelial cells: evidence and role of inflammasome signaling reviewed. J. Immunol. Res. 2015; 2015: 828264. https://doi.org/10.1155/2015/828264
21. Palazon-Riquelme P., Lopez-Castejon G. The inflammasomes, immune guardians at defence barrier. Immunology. 2018; 155(3): 320–30. https://doi.org/10.1111/imm.12989
22. Seo G.Y., Giles D.A., Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol. 2020; 13(3): 399–412. https://doi.org/10.1038/s41385-020-0265-y
23. Ye M., Beach J., Martin J.W., Senthilselvan A. Pesticide exposures and respiratory health in general populations. J Environ Sci (China). 2017; 51: 361–70. https://doi.org/10.1016/j.jes.2016.11.012
24. Senthilselvan A., Coonghe W.V.L., Beach J. Respiratory health, occupation and the healthy worker effect. Occup Med (Lond). 2020; 70(3): 191–9. https://doi.org/10.1093/occmed/kqaa023
25. George C.L., Jin H., Wohlford-Lenane C.L., O’Neill M.E., Phipps J.C., O’Shaughnessy P., Kline J.N., Thorne P.S., Schwartz D.A. Endotoxin responsiveness and subchronic grain dust-induced airway disease. Am J Physiol Lung Cell Mol Physiol. 2001; 280(2): L203–13. https://doi.org/10.1152/ajplung.2001.280.2.L203
26. Charavaryamath C., Juneau V., Suri S.S., Janardhan K.S., Townsend H., Singh B. Role of Toll-like receptor 4 in lung inflammation following exposure to swine barn air. Exp. Lung Res. 2008; 34: 19–35.
27. Senthilselvan A., Dosman J.A., Chénard L., Burch L.H., Predicala B.Z. et al. Toll-like receptor 4 variants reduce airway response in human subjects at high endotoxin levels in a swine facility. J Allergy Clin Immunol. 2009; 123(5): 1034–1040.e2. https://doi.org/10.1016/j.jaci.2009.02.019
28. Fedina I.N., Pankova V.B., Serebryakov P.V. Pathology of the upper respiratory tract: occupational risks. Rossiyskaya rinologiya. 2018; 26(4): 35–39. https://doi.org/10.17116/rosrino20182604135
29. Masyagutova L.M., Bakirov A.B. Immunological indicators in workers of various livestock industries under conditions of microbial load. Gigiena i sanitariya. 2019; 98(9): 972–7. https://doi.org/10.18821/0016-9900-2019-98-9-972-977
30. Alemu Basazin Mingude, Getachew Yideg Yitbarek, Mitku Mammo Taderegew BMC Chronic respiratory symptoms and pulmonary function status in Ethiopian agricultural workers: a comparative study Gashaw Garedew Woldeamanuel. Pulm Med. 2020; 20: 86. https://doi.org/10.1186/s12890-020-1120-3
31. von Schéele I., Larsson K., Palmberg L. Interactions between alveolar epithelial cells and neutrophils under pro-inflammatory conditions. Eur Clin Respir J. 2014; 1. https://doi.org/10.3402/ecrj.v1.24545
32. Elisabeth A.J. Spierenburg, Lidwien A.M. Smit, Esmeralda J.M. Krop et al. Wouters Occupational endotoxin exposure in association with atopic sensitization and respiratory health in adults: Results of a 5-year follow-up. PLoS One. 2017; 12(12). https://doi.org/10.1371/journal.pone.0189097
33. Sundblad B.M., von Scheele I., Palmberg L., Olsson M., Larsson K. Repeated exposure to organic material alters inflammatory and physiological airway responses. Eur Respir J. 2009; 34(1): 80–8. https://doi.org/10.1183/09031936.00105308
34. Girard M., Israël-Assayag E., Cormier Y. Impaired function of regulatory T-cells in hypersensitivity pneumonitis. Eur Respir J. 2011; 37(3): 632–9. https://doi.org/10.1183/09031936.00055210
35. Ivetic A., Hoskins Green H.L., Hart S.J. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol. 2019; 10: 1068. https://doi.org/10.3389/fimmu.2019.01068
36. Poole J.A., Wyatt T.A., Von Essen S.G., Hervert J., Parks C., Mathisen T., Romberger D.J. Repeat organic dust exposure-induced monocyte inflammation is associated with protein kinase C activity. J Allergy Clin Immunol. 2007; 120(2): 366–73. https://doi.org/10.1016/j.jaci.2007.04.033
37. Poole J.A., Alexis N.E., Parks C., MacInnes A.K., Gentry-Nielsen M.J., Fey P.D. et al. Repetitive organic dust exposure in vitro impairs macrophage differentiation and function. J Allergy Clin Immunol. 2008; 122(2): 375–82, 382.e1-4. https://doi.org/10.1016/j.jaci.2008.05.023 Epub 2008 Jun 27.
38. Gounni A.S. The high-affinity IgE receptor (FcepsilonRI): a critical regulator of airway smooth muscle cells? Am J Physiol Lung Cell Mol Physiol. 2006; 291(3): L312–21. https://doi.org/10.1152/ajplung.00005.2006
39. Wu Y.F., Li Z.Y., Dong L.L., Li W.J., Wu Y.P., Wang J., Chen H.P., et al. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy. 2020; 16(3): 435–50. https://doi.org/10.1080/15548627.2019.1628536
40. Poole Jill A., Kielian Tammy, Wyatt Todd A., Gleason Angela M., Stone Jeremy, Kelsey Palm. Et al. Romberger Organic dust augments nucleotide-binding oligomerization domain (NOD2) expression via an NF-{kappa}B pathway to negatively regulate inflammatory responses. Am J Physiol Lung Cell Mol Physiol. 2011; 301(3): L296–306. https://doi.org/10.1152/ajplung.00086.2011
41. Lea S.R., Reynolds S.L., Kaur M., Simpson K.D., Hall S.R., Hessel E.M., Singh D. The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages. Int J Chron Obstruct Pulmon Dis. 2018; 13: 771–780. https://doi.org/10.2147/COPD.S97071
42. Bui T.M., Wiesolek H.L., Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020; 108(3): 787–99. https://doi.org/10.1002/JLB.2MR0220-549R
43. Arthur Ataam J., Mercier O., Lamrani L., Amsallem M., Arthur Ataam J. et al. ICAM-1 promotes the abnormal endothelial cell phenotype in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2019; 38(9): 982–96. https://doi.org/10.1016/j.healun.2019.06.010
44. Lv G., Fan J. Silencing ICAM-1 reduces the adhesion of vascular endothelial cells in mice with immunologic contact urticaria. Gene. 2020; 760: 144965. https://doi.org/10.1016/j.gene.2020.144965
45. Bella J., Rossmann M.G. ICAM-1 receptors and cold viruses. Pharm Acta Helv. 2000; 74(2–3): 291–7. https://doi.org/10.1016/s0031-6865(99)00056-4
46. Poole J.A., Wyatt Todd A., Debra J. Romberger, Elizabeth Staab, Samantha Simet, et al. MyD88 in lung resident cells governs airway inflammatory and pulmonary function responses to organic dust treatment. Respir. Res. 2015; 16: 111. https://doi.org/10.1186/s12931-015-0272-9
47. Dickinson J.D., Sweeter J.M., Staab E.B., Nelson A.J., Bailey K.L., et al. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. Am J Physiol Lung Cell Mol Physiol. 2019; 316(2): L334–L347. https://doi.org/10.1152/ajplung.00206.2018
48. Soni S., Wilson M.R., O’Dea K.P., Yoshida M., Katbeh U., Woods S.J., Takata M. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax. 2016; 71(11): 1020–9. https://doi.org/10.1136/thoraxjnl-2015-208032
49. Remo Frei, Caroline Roduit, Christian Bieli, Susanne Loeliger, Marco Waser, Annika Scheynius. Expression of genes related to anti-inflammatory pathways are modified among farmers’ children. PLoS One. 2014; 9(3): e91097. https://doi.org/10.1371/journal.pone.0091097
50. Gassner-Bachmann M., Wüthrich B. Farmers’ children suffer less from hay fever and asthma. Dtsch Med Wochenschr. 2000; 125(31–32): 924–31. https://doi.org/10.1055/s-2000-6778
51. Weinstein L., Revuelta A., Pando R.H. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann. N. Y. Acad. Sci. 2015; 1351; 9: 39–51.
52. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007; 449(7164): 819–26. https://doi.org/10.1038/nature06246
53. Thaiss C.A., Zmora N., Levy M., Elinav E. The microbiome and innate immunity. Nature. 2016; 535(7610): 65–74. https://doi.org/10.1038/nature18847
54. Hillion S., Arleevskaya M.I., Blanco P., Bordron A., Brooks W.H., Cesbron J.Y., Kaveri S., Vivier E., Renaudineau Y. The Innate Part of the Adaptive Immune System. Clin Rev Allergy Immunol. 2020; 58(2): 151–4. https://doi.org/10.1007/s12016-019-08740-1
55. Li C., Li J., Ni H. Crosstalk Between Platelets and Microbial Pathogens. Front Immunol. 2020; 11: 1962. https://doi.org/10.3389/fimmu.2020.01962
56. Il’ina N.I. Clinical immunology and immune-mediated inflammatory diseases. Rossiyskiy allergologicheskiy zhurnal. 2010; 2: 54–7.
57. Petrov R.V., Khaitov R.M., Chereshnev V.A. Physiology of the immune system: cellular and molecular biological mechanisms. Vestnik Rossiyskogo fonda fundamental’nykh issledovaniy. 2017; S1: 96–119. https://doi.org/10.22204/2410-4639-2017-094-02S-96-119
58. Chereshnev V.A., Chereshneva M.V. Ecology and pathology. In the collection: High technologies that determine the quality of life. materials of the II International scientific conference. Perm State National Research University. 2018; S: 5–11.
Review
For citations:
Masyagutova L.M., Bakirov A.B., Gizatullina L.G., Abdrakhmanova E.R., Rafikova L.A., Kabirova E.F. The risk of modification of the immune response of the body in agricultural workers from the effects of a biological factor. Russian Journal of Occupational Health and Industrial Ecology. 2022;62(12):821-827. (In Russ.) https://doi.org/10.31089/1026-9428-2022-62-12-821-827